
✬

✫

✩

✪

Part IV:

Theory of Generalized Linear

Models
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✬

✫

✩

✪

Lung cancer surgery

Q: Is there an association between time spent in the operating room and

post-surgical outcomes?

• Could choose from a number of possible response variables, including:

⋆ hospital stay of > 7 days

⋆ number of major complications during the hospital stay

• The scientific goal is to characterize the joint distribution between both of

these responses and a p-vector of covariates, X

⋆ age, co-morbidities, surgery type, resection type, etc

• The first response is binary and the second is a count variable

⋆ Y ∈ {0, 1}
⋆ Y ∈ {0, 1, 2, . . .}
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✬

✫

✩

✪

Q: Can we analyze such response variables with the linear regression model?

⋆ specify a mean model

E[Yi|Xi] = XT
i β

⋆ estimate β via least squares and perform inference via the CLT

• Given continuous response data, least squares estimation works remarkably

well for the linear regression model

⋆ assuming the mean model is correctly specified, β̂
OLS

is unbiased

⋆ OLS is generally robust to the underlying distribution of the error terms

∗ Homework #2

⋆ OLS is ‘optimal’ if the error terms are homoskedastic

∗ MLE if ǫ ∼ Normal(0, σ2) and BLUE otherwise
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✬

✫

✩

✪

• For a binary response variable, we could specify a linear regression model:

E[Yi|Xi] = XT
i β

Yi|Xi ∼ Bernoulli(µi)

where, for notational convenience, µi = XT
i β

• As long as this model is correctly specified, β̂
OLS

will still be unbiased

• For the Bernoulli distribution, there is an implicit mean-variance

relationship:

V[Yi|Xi] = µi(1− µi)

⋆ as long as µi 6= µ ∀ i, study units will be heteroskedastic

⋆ non-constant variance
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✬

✫

✩

✪

• Ignoring heteroskedasticity results in invalid inference

⋆ näıve standard errors (that assume homoskedasticity) are incorrect

• We’ve seen three possible remedies:

(1) transform the response variable

(2) use OLS and base inference on a valid standard error

(3) use WLS

• Recall, β̂
WLS

is the solution to

0 =
∂

∂β
RSS(β;W )

0 =
∂

∂β

n∑

i=1

wi(yi −XT
i β)

2

0 =
n∑

i=1

Xiwi(yi −XT
i β)
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✬

✫

✩

✪

• For a binary response, we know the form of V[Yi]

⋆ estimate β by setting W = Σ
−1, a diagonal matrix with elements:

wi =
1

µi(1− µi)

• From the Gauss-Markov Theorem, the resulting estimator is BLUE

β̂
GLS

= (XT
Σ

−1X)−1XT
Σ

−1Y

• Note, the least squares equations become

0 =

n∑

i=1

Xi

µi(1− µi)
(yi − µi)

⋆ in practice, we use the IWLS algorithm to estimate β̂
GLS

while

simultaneously accommodating the mean-variance relationship
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✬

✫

✩

✪

• We can also show that β̂
GLS
, obtained via the IWLS algorithm, is the MLE

⋆ firstly, note that the likelihood and log-likelihood are:

L(β|y) =
n∏

i=1

µyi

i (1− µi)
1−yi

ℓ(β|y) =
n∑

i=1

yi log(µi) + (1− yi) log(1− µi)

⋆ to get the MLE, we take derivatives, set them equal to zero and solve

⋆ following the algebra trail we find that

∂

∂β
ℓ(β|y) =

n∑

i=1

Xi

µi(1− µi)
(Yi − µi)

• The score equations are equivalent to the least squares equations

⋆ β̂
GLS

is therefore ML
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✬

✫

✩

✪

• So, least squares estimation can accommodate implicit heteroskedasticity

for binary data by using the IWLS algorithm

⋆ assuming the model is correctly specified, WLS is in fact optimal!

• However, when modeling binary or count response data, the linear

regression model doesn’t respect the fact that the outcome is bounded

⋆ the functional that is being modeled is bounded:

∗ binary: E[Yi|Xi] ∈ (0, 1)

∗ count: E[Yi|Xi] ∈ (0,∞)

⋆ but our current specification of the mean model doesn’t impose any

restrictions

E[Yi|Xi] = XT
i β

Q: Is this a problem?
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✬

✫

✩

✪

Summary

• Our goal is to develop statistical models to characterize the relationship

between some response variable, Y , and a vector of covariates, X

• Statistical models consist of two components:

⋆ a systematic component

⋆ a random component

• When moving beyond linear regression analysis of continuous response

data, we need to be aware of two key challenges:

(1) sensible specification of the systematic component

(2) proper accounting of any implicit mean-variance relationships

arising from the random component
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✬

✫

✩

✪

Generalized Linear Models

Definition

• A generalized linear model (GLM) specifies a parametric statistical model

for the conditional distribution of a response Yi given a p-vector of

covariates Xi

• Consists of three elements:

(1) probability distribution, Y ∼ fY (y)

(2) linear predictor, XT
i β

(3) link function, g(·)

⋆ element (1) is the random component

⋆ elements (2) and (3) jointly specify the systematic component
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✬

✫

✩

✪

Random component

• In practice, we see a wide range of response variables with a wide range of

associated (possible) distributions

Response type Range Possible distribution

Continuous (−∞, ∞) Normal(µ, σ2)

Binary {0, 1} Bernoulli(π)

Polytomous {1, . . . , K} Multinomial(πk)

Count {0, 1, . . . , n} Binomial(n, π)

Count {0, 1, . . .} Poisson(µ)

Continuous (0, ∞) Gamma(α, β)

Continuous (0, 1) Beta(α, β)

• Desirable to have a single framework that accommodates all of these
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✬

✫

✩

✪

Systematic component

• For a given choice of probability distribution, a GLM specifies a model for

the conditional mean:

µi = E[Yi|Xi]

Q: How do we specify reasonable models for µi while ensuring that we respect

the appropriate range/scale of µi?

• Achieved by constructing a linear predictor XT
i β and relating it to µi via a

link function g(·):

g(µi) = XT
i β

⋆ often use the notation ηi = XT
i β
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✬

✫

✩

✪

The random component

• GLMs form a class of statistical models for response variables whose

distribution belongs to the exponential dispersion family

⋆ family of distributions with a pdf/pmf of the form:

fY (y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}

⋆ θ is the canonical parameter

⋆ φ is the dispersion parameter

⋆ b(θ) is the cumulant function

• Many common distributions are members of this family
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✬

✫

✩

✪

• Y ∼ Bernoulli(π)

fY (y;π) = µy(1− µ)1−y

fY (y; θ, φ) = exp {yθ − log (1 + exp{θ})}

θ = log

(
π

1− π

)

a(φ) = 1

b(θ) = log (1 + exp{θ})

c(y, φ) = 0
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✬

✫

✩

✪

• Many other common distributions are also members of this family

• The canonical parameter has key relationships with both E[Y ] and V[Y ]

⋆ typically varies across study units

⋆ index θ by i: θi

• The dispersion parameter has a key relationship with V[Y ]

⋆ may but typically does not vary across study units

⋆ typically no unit-specific index: φ

⋆ in some settings we may have a(·) vary with i: ai(φ)

∗ e.g. ai(φ) = φ/wi, where wi is a prior weight

• When the dispersion parameter is known, we say that the distribution is a

member of the exponential family

212 BIO 233, Spring 2015



✬

✫

✩

✪

Properties

• Consider the likelihood function for a single observation

L(θi, φ; yi) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}

• The log-likelihood is

ℓ(θi, φ; yi) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

• The first partial derivative with respect to θi is the score function for θi

and is given by

∂

∂θi
ℓ(θi, φ; yi) = U(θi) =

yi − b′(θi)

ai(φ)
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✬

✫

✩

✪

• Using standard results from likelihood theory, we know that under

appropriate regularity conditions:

E [U(θi)] = 0

V [U(θi)] = E
[
U(θi)

2
]

= −E

[
∂U(θi)

∂θi

]

⋆ this latter expression is the (i, i)th component of the Fisher information

matrix

• Since the score has mean zero, we find that

E

[
Yi − b′(θi)

ai(φ)

]
= 0

and, consequently, that

E[Yi] = b′(θi)
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✬

✫

✩

✪

• The second partial derivative of ℓ(θi, φ; yi) is

∂2

∂θ2i
ℓ(θi, φ; yi) = − b′′(θi)

ai(φ)

⋆ the observed information for the canonical parameter from the ith

observation

• This is also the expected information and using the above properties it

follows that

V [U(θi)] = V

[
Yi − b′(θi)

ai(φ)

]
=

b′′(θi)

ai(φ)
,

so that

V[Yi] = b′′(θi)ai(φ)
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✬

✫

✩

✪

• The variance of Yi is therefore a function of both θi and φ

• Note that the canonical parameter is a function of µi

µi = b′(θi) ⇒ θi = θ(µi) = b′−1(µi)

so that we can write

V[Yi] = b′′(θ(µi))ai(φ)

• The function V (µi) = b′′(θ(µi)) is called the variance function

⋆ specific form indicates the nature of the (if any) mean-variance

relationship

• For example, for Y ∼ Bernoulli(µ)

a(φ) = 1
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✬

✫

✩

✪

b(θ) = log (1 + exp{θ})

E[Y ] = b′(θ)

=
exp{θ}

1 + exp{θ} = µ

V[Y ] = b′′(θ)a(φ)

=
exp{θ}

(1 + exp{θ})2 = µ(1− µ)

V (µ) = µ(1− µ)
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✬

✫

✩

✪

The systematic component

• For the exponential dispersion family, the pdf/pmf has the following form:

fY (yi; θi, φ) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}

⋆ this distribution is the random component of the statistical model

• We need a means of specifying how this distribution depends on a vector

of covariates Xi

⋆ the systematic component

• In GLMs we model the conditional mean, µi = E[Yi|Xi]

⋆ provides a connection between Xi and distribution of Yi via the

canonical parameter θi and the cumulant function b(θi)
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✬

✫

✩

✪

• Specifically, the relationship between µi and Xi is given by

g(µi) = XT
i β

⋆ we ‘link’ the linear predictor to the distribution of of Yi via a

transformation of µi

• Traditionally, this specification is broken down into two parts:

(1) the linear predictor, ηi = XT
i β

(2) the link function, g(µi) = ηi

• You’ll often find the linear predictor called the ‘systematic component’

⋆ e.g., McCullagh and Nelder (1989) Generalized Linear Models

• In practice, one cannot consider one without the other

⋆ the relationship between µi and Xi is jointly determined by β and g(·)
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✬

✫

✩

✪

The linear predictor, ηi = XT
i β

• Constructing the linear predictor for a GLM follows the same process one

uses for linear regression

• Given a set of covariates Xi, there are two decisions

⋆ which covariates to include in the model?

⋆ how to include them in the model?

• For the most part, the decision of which covariates to include should be

driven by scientific considerations

⋆ is the goal estimation or prediction?

⋆ is there a primary exposure of interest?

⋆ which covariates are predictors of the response variable?

⋆ are any of the covariates effect modifiers? confounders?

220 BIO 233, Spring 2015



✬

✫

✩

✪

• In some settings, practical or data-oriented considerations may drive these

decisions

⋆ small sample sizes

⋆ missing data

⋆ measurement error/missclassification

• How one includes them in the model will also depend on a mixture of

scientific and practical considerations

• Suppose we are interested in the relationship between birth weight and risk

of death within the first year of life

⋆ infant mortality

• Note: birth weight is a continuous covariate

⋆ there are a number of options for including a continuous covariate into

the linear predictor
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✬

✫

✩

✪

• Let Xw denote the continuous birth weight measure

• A simple model would be to include Xw via a linear term

η = β0 + β1Xw

⋆ a ‘constant’ relationship between birth weight and infant mortality

• May be concerned that this is too restrictive a model

⋆ include additional polynomial terms

η = β0 + β1Xw + β2X
2
w + β3X

3
w

⋆ more flexible than the linear model

⋆ but the interpretation of β2 and β3 is difficult
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✬

✫

✩

✪

• Scientifically, one might only be interested in the ‘low birth weight’

threshold

⋆ let Xlbw = 0/1 if birth weight is >2.5kg/≤2.5kg

η = β0 + β1Xlbw

⋆ impact of birth weight on risk of infant mortality manifests solely

through whether or not the baby has a low birth weight

• The underlying relationship may be more complex than a simple linear or

threshold effect, although we don’t like the (lack of) interpretability of the

polynomial model

⋆ categorize the continuous covariates into K + 1 groups

⋆ include in the linear predictor via K dummy variables

η = β0 + β1Xcat,1 + . . . + βKXcat,K
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✬

✫

✩

✪

The link function, g(·)

• Given the form of linear predictor XT
i β we need to specify how it is

related to the conditional mean µi

• As we’ve noted, the range of values that µi can take on may be restricted

⋆ binary data: µi ∈ (0, 1)

⋆ count data: µi ∈ (0,∞)

• One approach would be to estimate β subject to the constraint that all

(modeled) values of µi respect the appropriate range

Q: What might the drawbacks of such an approach be?
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✬

✫

✩

✪

• An alternative is to permit the estimation of β to be ‘free’ but impose a

functional form of the relationship between µi and XT
i β

⋆ via the link function g(·)

g(µi) = XT
i β

• We interpret the link function as specifying a transformation of the

conditional mean, µi

⋆ we are not specifying a transformation of the response Yi

• The inverse of the link function provides the specification of the model on

the scale of µi

µi = g−1
(
XT

i β
)

⋆ link functions are therefore usually monotone and have a well-defined

inverse
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✬

✫

✩

✪

• In linear regression we specify

µi = XT
i β

⋆ g(·) is the identity link

• In logistic regression we specify

log

(
µi

1− µi

)
= XT

i β

⋆ g(·) is the logit or logistic link

• In Poisson regression we specify

log(µi) = XT
i β

⋆ g(·) is the log link
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✬

✫

✩

✪

• For linear regression also we have that

µi = XT
i β

⋆ g−1(ηi) = ηi is the identity function

• For logistic regression

µi =
exp

{
XT

i β
}

1 + exp
{
XT

i β
}

⋆ g−1(ηi) = expit(ηi) is the expit function

• For Poisson regression

µi = exp
{
XT

i β
}

⋆ g−1(ηi) = exp(ηi) is the exponential function
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✬

✫

✩

✪

The canonical link

• Recall that the mean and the canonical parameter are linked via the

derivative of the cumulant function

⋆ E[Yi] = µi = b′(θi)

• An important link function is the canonical link:

g(µi) = θ(µi)

⋆ the function that results by viewing the canonical parameter θi as a

function of µi

⋆ inverse of b′(·)

• We’ll see later that this choice results in some mathematical convenience
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✬

✫

✩

✪

Choosing g(·)

• In practice, there are often many possible link functions

• For binary response data, one might choose a link function from among

the following:

identity: g(µi) = µi

log: g(µi) = log(µi)

logit: g(µi) = log

(
µi

1− µi

)

probit: g(µi) = probit(µi)

complementary log-log: g(µi) = log {−log(1− µi)}

⋆ note the logit link is the canonical link function
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✬

✫

✩

✪

• We typically choose a specific link function via consideration of two issues:

(1) respect of the range of values that µi can take

(2) impact on the interpretability of β

• There can be a trade-off between mathematical convenience and

interpretability of the model

• We’ll spend more time on this later on in the course
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✬

✫

✩

✪

Frequentist estimation and inference

• Given an i.i.d sample of size n, the log-likelihood is

ℓ(β, φ;y) =
n∑

i=1

yiθi − b(θi)

ai(φ)
+ c(yi, φ)

where θi is a function of β and is determined by

⋆ the form of b′(θi) = µi

⋆ the choice of the link function via g(µi) = ηi = XT
i β

• The primary goal is to perform estimation and inference with respect to β

• Since we’ve fully specified the likelihood, we can proceed with

likelihood-based estimation/inference
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✬

✫

✩

✪

Estimation

• There are (p+2) unknown parameters: (β, φ)

• To obtain the MLE we need to solve the score equations:

(
∂ℓ(β, φ;y)

∂β0
, · · · , ∂ℓ(β, φ;y)

∂βp

,
∂ℓ(β, φ;y)

∂φ

)T

= 0

⋆ system of (p+2) equations

• The contribution to the score for φ by the ith unit is

∂ℓ(β, φ; yi)

∂φ
= − a′i(φ)

ai(φ)2
(yiθi − b(θi)) + c′(yi, φ)
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✬

✫

✩

✪

• We can use the chain rule to obtain a convenient expression for the ith

contribution to the score function for βj :

∂ℓ(β, φ; yi)

∂βj

=
∂ℓ(β, φ; yi)

∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

• Note the following results:

∂ℓ(β, φ; yi)

∂θi
=

yi − µi

ai(φ)

∂µi

∂θi
= b′′(θi)

=
V[Yi]

ai(φ)

∂ηi
∂βj

= Xj,i
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✬

✫

✩

✪

• The score function for βj can therefore be written as

∂ℓ(β, φ;y)

∂βj

=

n∑

i=1

∂µi

∂ηi

Xj,i

V (µi)ai(φ)
(yi − µi)

⋆ depends on the distribution of Yi solely through E[Yi] = µi and

V[Yi] = V (µi)ai(φ)

• Suppose ai(φ) = φ/wi. The score equations become

∂ℓ(β, φ;y)

∂φ
=

n∑

i=1

− wi (yiθi − b(θi))

φ2
+ c′(yi, φ) = 0

∂ℓ(β, φ;y)

∂βj

=
n∑

i=1

wi

∂µi

∂ηi

Xj,i

V (µi)
(yi − µi) = 0
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✬

✫

✩

✪

• Notice that the (p+1) score equations for β do not depend on φ

• Consequently, obtaining the MLE of β doesn’t require knowledge of φ

⋆ φ isn’t required to be known or estimated (if unknown)

⋆ for example, in linear regression we don’t need σ2 (or σ̂2) to obtain

β̂
MLE

= (XTX)−1XTY

⋆ inference does require an estimate of φ (see below)
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✬

✫

✩

✪

Asymptotic sampling distribution

• From standard likelihood theory, subject to appropriate regularity

conditions,

√
n((β̂

MLE
, φ̂MLE)− (β, φ)) −→ MVN

(
0, I(β, φ)−1

)

• To get the asymptotic variance, we first need to derive expressions for the

second partial derivatives:

∂2ℓ(β, φ; yi)

∂βj∂βk

=
∂

∂βk

{
∂µi

∂ηi

Xj,i

V (µi)ai(φ)
(yi − µi)

}

= (yi − µi)
∂

∂βk

{
∂µi

∂ηi

Xj,i

V (µi)ai(φ)

}
−
(
∂µi

∂ηi

)2
Xj,iXk,i

V (µi)ai(φ)
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✬

✫

✩

✪

∂2ℓ(β, φ; yi)

∂βj∂φ
=

∂

∂φ

{
∂µi

∂ηi

Xj,i

V (µi)ai(φ)
(yi − µi)

}

= − a′i(φ)

ai(φ)2
∂µi

∂ηi

Xj,i

V (µi)
(yi − µi)

∂2ℓ(β, φ; yi)

∂φ∂φ
=

∂

∂φ

{
− a′i(φ)

ai(φ)2
(yiθi − b(θi)) + c′(yi, φ)

}

= −
{
ai(φ)

2a′′i (φ)− 2ai(φ)a
′

i(φ)
2

ai(φ)4

}
(yiθi − b(θi)) + c′′(yi, φ)

= − K(φ) (yiθi − b(θi)) + c′′(yi, φ)
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✬

✫

✩

✪

• Upon taking expectations with respect to Y , we find that

− E

[
∂2ℓ(β, φ;y)

∂βj∂βk

]
=

n∑

i=1

(
∂µi

∂ηi

)2
Xj,iXk,i

V (µi)ai(φ)

• The second expression has mean zero, so that

− E

[
∂2ℓ(β, φ;y)

∂βj∂φ

]
= 0

• Taking the expectation of the negative of the third expression gives:

− E

[
∂2ℓ(β, φ;y)

∂φ∂φ

]
=

n∑

i=1

K(φ) (b′(θi)θi − b(θi)) − E[c′′(Yi, φ)]
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✬

✫

✩

✪

• The expected information matrix can therefore be written in

block-diagonal form:

I(β, φ) =


 Iββ 0

0 Iφφ




where the components of Iββ are given by the first expression on the

previous slide and the Iφφ is given by the last expression on the previous

slide

• The inverse of the information matrix is gives the asymptotic variance

V[β̂
MLE

, φ̂MLE] = I(β, φ)−1 =


 I−1

ββ 0

0 I−1
φφ
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✬

✫

✩

✪

• The block-diagonal structure V[β̂
MLE

, φ̂MLE] indicates that for GLMs valid

characterization of the uncertainty in our estimate of β does not require

the propagation of uncertainty in our estimation of φ

• For example, for linear regression of Normally distributed response data we

plug in an estimate of σ2 into

V[β̂
MLE

] = σ2(XTX)−1

⋆ we typically don’t plug in σ̂2
MLE

but, rather, an unbiased estimate:

σ̂2 =
1

n− p− 1

n∑

i=1

(Yi −XT
i β̂MLE

)2

⋆ further, we don’t worry about the fact that what we plug in is an

estimate of σ2
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✬

✫

✩

✪

• For GLMs, therefore, estimation of the variance of β̂
MLE

proceeds by

plugging in the values of (β̂
MLE

, φ̂) into the upper (p+1)×(p+1)

sub-matrix:

V̂[β̂
MLE

] = Î−1
ββ

where φ̂ is any consistent estimator of φ
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✬

✫

✩

✪

Matrix notation

• If we set

Wi =

(
∂µi

∂ηi

)2
1

V (µi)ai(φ)

then the (j, k)th element of Iββ can be expressed as

n∑

i=1

WiXj,iXk,i

• We can therefore write:

Iββ = XTWX

where W is an n× n diagonal matrix with entries Wi, i = 1, . . ., n, and

X is the design matrix from the specification of the linear predictor
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✬

✫

✩

✪

Special case: canonical link function

• For the canonical link function, ηi = g(µi) = θi(µi), so that

∂θi
∂ηi

= 1 ⇒ ∂µi

∂ηi
=

∂µi

∂θi

∂θi
∂ηi

=
V[Yi]

ai(φ)
= V (µi)

• The score contribution for βj by the ith unit simplifies to

∂ℓ(β, φ; yi)

∂βj

=
∂µi

∂ηi

Xj,i

V (µi)ai(φ)
(yi − µi) =

Xj,i

ai(φ)
(yi − µi)

and the components of the sub-matrix for β of the expected information

matrix, Iββ , are the summation of

−E

[
∂2ℓ(β, φ; yi)

∂βj∂βk

]
=

(
∂µi

∂ηi

)2
Xj,iXk,i

V (µi)ai(φ)
=

V (µi)Xj,iXk,i

ai(φ)
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✬

✫

✩

✪

Hypothesis testing

• For the linear predictor XT
i β, suppose we partition β = (β1,β2) and we

are interested in testing:

H0 : β1 = β1,0 vs Ha : β1 6= β1,0

⋆ length of β1 is q ≤ (p+ 1)

⋆ β2 is left arbitrary

• In most settings, β1,0 = 0 which represents some form of ‘no effect’

⋆ at least given the structure of the model

• Following our review of asymptotic theory, there are three common

hypothesis testing frameworks
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✬

✫

✩

✪

• Wald test:

⋆ let β̂
MLE

= (β̂1,MLE
, β̂2,MLE

)

⋆ under H0

(β̂1,MLE
− β1,0)

T V̂[β̂1,MLE
]−1(β̂1,MLE

− β1,0) −→d χ2
q

where V̂[β̂1,MLE
] is the inverse of the q × q sub-matrix of Iββ

corresponding to β1, evaluated at β̂1,MLE

• Score test:

⋆ let β̂0,MLE
= (β1,0, β̂2,MLE

) denote the MLE under H0

⋆ under H0

U(β̂0,MLE
;y)I(β̂0,MLE

)−1U(β̂0,MLE
;y) −→d χ2

q
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✬

✫

✩

✪

• Likelihood ratio test:

⋆ obtain the ‘best fitting model’ without restrictions: θ̂MLE

⋆ obtain the ‘best fitting model’ under H0: θ̂0,MLE

⋆ under H0

2(ℓ(β̂
MLE

;y)− ℓ(β̂0,MLE
;y)) −→d χ2

q
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✬

✫

✩

✪

Iteratively re-weighted least squares

• We saw that the score equation for βj is

∂ℓ(β, φ;y)

∂βj

=
n∑

i=1

∂µi

∂ηi

Xj,i

V (µi)ai(φ)
(yi − µi) = 0

⋆ estimation of β requires solving (p+ 1) of these equations

simultaneously

⋆ tricky because β appears in several places

• A general approach to finding roots is the Newton-Raphson algorithm

⋆ iterative procedure based on the gradient

• For a GLM, the gradient is the derivative of the score function with

respect to β

⋆ these form the components of the observed information matrix Iββ
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✬

✫

✩

✪

• Fisher scoring is an adaptation of the Newton-Raphson algorithm that

uses the expected information, Iββ , rather than Iββ , for the update

• Suppose the current estimate of β is β̂
(r)

⋆ compute the following:

η
(r)
i = XT

i β̂
(r)

µ
(r)
i = g−1

(
η
(r)
i

)

W
(r)
i =

(
∂µi

∂ηi

∣∣∣∣
η
(r)
i

)2
1

V
(
µ
(r)
i

)

z
(r)
i = η

(r)
i +

(
yi − µ

(r)
i

) ∂ηi
∂µi

∣∣∣∣
µ
(r)
i

⋆ Wi is called the ‘working weight’

⋆ zi is called the ‘adjusted response variable’
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✬

✫

✩

✪

• The updated value of β̂ is obtained as the WLS estimate to the regression

of Z on X :

β̂
(r+1)

= (XTW (r)X)−1(XTW (r)Z(r))

⋆ X is the n× (p+ 1) design matrix from the initial specification of the

model

⋆ W (r) is a diagonal n× n matrix with entries {W (r)
1 , . . . ,W

(r)
n }

⋆ Z(r) is the n-vector (z
(r)
1 , . . . , z

(r)
n )

• Iterate until the value of β̂ converges

⋆ i.e. the difference between β̂
(r+1)

and β̂
(r)

is ‘small’
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✬

✫

✩

✪

Fitting GLMs in R with glm()

• A generic call to glm() is given by

fit0 <- glm(formula, family, data, ...)

⋆ many other arguments that control various aspects of the model/fit

⋆ ?glm for more information

• ‘data’ specifies the data frame containing the response and covariate data

• ‘formula’ specifies the structure of linear predictor, ηi = XT
i β

⋆ input is an object of class ‘formula’

⋆ typical input might be of the form:

Y ∼ X1 + X2 + X3

⋆ ?formula for more information
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✬

✫

✩

✪

• ‘family’ jointly specifies the probability distribution fY (·), link function

g(·) and variance function V (·)
⋆ most common distributions have already been implemented

⋆ input is an object of class ‘family’

∗ object is a list of elements describing the details of the GLM

• The call for a standard logistic regression for binary data might be of the

form:

glm(Y ∼ X1 + X2, family=binomial(), data=myData)

or, more simply,

glm(Y ∼ X1 + X2, family=binomial, data=myData)

251 BIO 233, Spring 2015



✬

✫

✩

✪

• A more detailed look at family objects:

> ##

> ?family

> poisson()

Family: poisson

Link function: log

> ##

> myFamily <- binomial()

> myFamily

Family: binomial

Link function: logit

> names(myFamily)

[1] "family" "link" "linkfun" "linkinv" "variance"

"dev.resids" "aic"

[8] "mu.eta" "initialize" "validmu" "valideta" "simulate"

> myFamily$link

[1] "logit"
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✬

✫

✩

✪

> myFamily$variance

function (mu)

mu * (1 - mu)

>

> ## Changing the link function

> ## * for a true ’log-linear’ model we’d need to make appropriate

> ## changes to the other components of the family object

> ##

> myFamily$link <- "log"

>

> ## Standard logistic regression

> ##

> fit0 <- glm(Y ~ X, family=binomial)

>

> ## log-linear model for binary data

> ##

> fit1 <- glm(Y ~ X, family=binomial(link = "log"))

>

> ## which is (currently) not the same as

> ##

> fit1 <- glm(Y ~ X, family=myFamily)
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✬

✫

✩

✪

• Once you’ve fit a GLM you can examine the components of the glm object:

> ##

> names(fit0)

[1] "coefficients" "residuals" "fitted.values" "effects"

[5] "R" "rank" "qr" "family"

[9] "linear.predictors" "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights" "df.residual"

[17] "df.null" "y" "converged" "boundary"

[21] "model" "call" "formula" "terms"

[25] "data" "offset" "control" "method"

[29] "contrasts" "xlevels"

>

> ##

> names(summary(fit0))

[1] "call" "terms" "family" "deviance" "aic"

[6] "contrasts" "df.residual" "null.deviance" "df.null" "iter"

[11] "deviance.resid" "coefficients" "aliased" "dispersion" "df"

[16] "cov.unscaled" "cov.scaled"
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✬

✫

✩

✪

The deviance

• Recall, the contribution to the log-likelihood by the ith study unit is

ℓ(θi, φ; yi) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

• Implicitly, θi is a function of µi so we could write the log-likelihood

contribution as a function of µi:

ℓ(θi, φ; yi) ⇒ ℓ(µi, φ; yi)

• Given β̂
MLE

, we can compute each µ̂i and evaluate

ℓ(µ̂, φ;y) =

n∑

i=1

ℓ(µ̂i, φ; yi),

⋆ the maximum log-likelihood
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✬

✫

✩

✪

• ℓ(µ̂, φ;y) is the maximum achievable log-likelihood given the structure of

the model

⋆ µi is modeled via g(µi) = ηi = XT
i β

⋆ any other value of β would correspond to a lower value of the

log-likelihood

• The overall maximum achievable log-likelihood, however, is one based on a

saturated model

⋆ same number of parameters as observations

⋆ each observation is its own mean: µi = yi

ℓ(y, φ;y) =

n∑

i=1

ℓ(yi, φ; yi),

⋆ this represents the ‘best possible fit’
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✬

✫

✩

✪

• The difference

D∗(y, µ̂) = 2 [ℓ(y, φ;y) − ℓ(µ̂, φ;y)]

is called the scaled deviance

• Let

⋆ θ̃i be the value of θi based on setting µi = yi

⋆ θ̂i be the value of θi based on setting µi = µ̂i

• If we take ai(φ) = φ/wi, then

D∗(y, µ̂) =
n∑

i=1

2wi

φ

[
yi(θ̃i − θ̂i) − b(θ̃i) + b(θ̂i)

]
=

D(y, µ̂)

φ

• D(y, µ̂) is the deviance for the current model
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✬

✫

✩

✪

• D(y, µ̂) is used as a measure of goodness of fit of the model to the data

⋆ measures the ‘discrepancy’ between the fitted model and the data

• For the Normal distribution, the deviance is the sum of squared residuals:

D(y, µ̂) =

n∑

i=1

(yi − µ̂i)
2

⋆ has an exact χ2 distribution

⋆ compare two nested models by taking the difference in their deviances

∗ distribution of the difference is still a χ2

∗ the likelihood ratio test

• Beyond the Normal distribution the deviance is not χ2

• But we still can rely on a χ2 approximation to the asymptotic sampling

distribution of the difference in the deviance between two models
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✬

✫

✩

✪

Residuals

• In the context of regression modeling, residuals are used primarily to

⋆ examine the adequacy of model fit

∗ functional form for terms in the linear predictor

∗ link function

∗ variance function

⋆ investigate potential data issues

∗ e.g. outliers

• Interpreted as representing variation in the outcome that is not explained

by the model

⋆ variation once the systematic component has been accounted for

⋆ residuals are therefore model-specific
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✬

✫

✩

✪

• An ideal residual would look like an i.i.d sample when the correct mean

model is fit

• For linear regression, we often consider the raw or response residual

ri = yi − µ̂i

⋆ if the ǫi are homoskedastic then {r1, . . . , rn} will be i.i.d

• For GLMs the underlying probability distribution is often skewed and

exhibits a mean-variance relationship

• Pearson residuals account for the heteroskedasticity via standardization

rpi =
yi − µ̂i√
V (µ̂i)

⋆ Pearson χ2 statistic for goodness-of-fit is equal to
∑

i (r
p
i )

2
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✬

✫

✩

✪

• The deviance residual is defined as

rdi = sign(yi − µ̂i)
√
di

where di is the contribution to D(y, µ̂) from the ith study unit

⋆ why is this a reasonable quantity to consider?

• Pierce and Schafer (JASA, 1986) examined various residuals for GLMs

⋆ conclude that deviance residuals are ‘a very good choice’

⋆ very nearly normally distributed after one allows for the discreteness

⋆ continuity correction which replaces

yi ⇒ yi ±
1

2

in the definition of the residual

∗ +/− chosen to move the value closer to µ̂i
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✬

✫

✩

✪

• All three types of residuals are returned by glm() in R:

> ## generic (logistic regression) model

> fit0 <- glm(Y ~ X, family=binomial)

>

> args(residuals.glm)

function (object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

NULL

>

> ## deviance residuals are the default

> residual(fit0)

...

>

> ## extracting the pearson residuals

> residual(fit0, type="pearson")

...
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✬

✫

✩

✪

The Bayesian solution

• A GLM is specified by:

Yi|Xi ∼ fY (y;µi, φ)

E[Yi|Xi] = g−1(XT
i β) = µi

V[Yi|Xi] = V (µi)ai(φ)

⋆ fY (·) is a member of the exponential dispersion family

⋆ β is a vector of regression coefficients

⋆ φ is the dispersion parameter

• (β, φ) are the unknown parameters

⋆ note there might not necessarily be a dispersion parameter

⋆ e.g. for binary or Poisson data
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✬

✫

✩

✪

• Required to specify a prior distribution for (β, φ) which is often factored

into

π(β, φ) = π(β|φ)π(φ)

• For β|φ, strategies include

⋆ a flat, non-informative prior

∗ recover the classical analysis

∗ posterior mode corresponding to a uniform prior density is the MLE

⋆ an informative prior

∗ e.g., β ∼ MVN(β0, Σβ)

∗ convenient choice given the computational methods described below

• Unfortunately, specifying a prior for φ is less prescriptive

⋆ consider specific models in Parts V-VII of the notes
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✬

✫

✩

✪

• Given an independent sample Y1, . . ., Yn, the likelihood is the product of

n terms:

L(β, φ|y) =
n∏

i=1

fY (yi|µi, φ)

• Apply Bayes’ Theorem to get the posterior:

π(β, φ|y) ∝ L(β, φ|y)π(β, φ)
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✬

✫

✩

✪

Computation

• For most GLMs, the posterior won’t be of a convenient form

⋆ analytically intractable

• Use Monte Carlo methods to summarize the posterior distribution

• We’ve seen that the Gibbs sampler and the Metropolis-Hastings algorithm

are powerful tools for generating samples from the posterior distribution

⋆ need to specify a proposal distribution

⋆ need to specify starting values for the Markov chain(s)

• Towards this, let θ̃ = (β̃, φ̃) denote the posterior mode
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✬

✫

✩

✪

• Consider a Taylor series expansion of the log-posterior at θ̃:

log π(θ|y) = log π(θ̃|y)

+ (θ − θ̃)
∂

∂θ
log π(θ|y)

∣∣∣∣
θ=

˜θ

+
1

2
(θ − θ̃)T

[
∂2

∂θ∂θ
log π(θ|y)

]

θ=
˜θ
(θ − θ̃)

+ . . .

• Ignore the log π(θ̃|y) term because, as a function of θ, it is constant

• The linear term in the expansion disappears because the first derivative of

the log-posterior at the mode is equal to 0

• The middle component of the quadratic term is approximately the negative

observed information matrix, evaluated at the mode

267 BIO 233, Spring 2015



✬

✫

✩

✪

• We therefore get

log π(θ|y) ≈ −1

2
(θ − θ̃)T I(θ̃)(θ − θ̃)

which is the log of the kernel for a Normal distribution

• So, towards specifying a proposal distribution for the Metropolis-Hastings

algorithm, we can consider the following Normal approximation to the

posterior

π(θ|y) ≈ Normal
(
θ̃, I(θ̃)−1

)

Q: How can we make use of this for sampling from the posterior π(β, φ|y)?
⋆ there are many approaches that one could take

⋆ we’ll describe three
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✬

✫

✩

✪

• First, we need to find the mode, (β̃, φ̃)

⋆ the value that maximizes π(β, φ|y)
⋆ given a non-informative prior:

(β̃, φ̃) ≡ (β̂
MLE

, φ̂MLE)

∗ obtain the mode via the IRLS algorithm

⋆ otherwise, use any other standard optimization technique

∗ e.g. Newton-Raphson

∗ could use (β̂
MLE

, φ̂MLE) as a starting point

• Next, recall the block-diagonal structure of the information matrix for a

GLM:

I(β, φ) =


 Iββ 0

0 Iφφ
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✬

✫

✩

✪

• Exploit this and consider the approximation:

π(β|y) ≈ Normal
(
β̃, Vβ(β̃, φ̃)

)

to the marginal posterior of β

⋆ Vβ(β̃, φ̃) = I−1
ββ evaluated at the mode

⋆ denote the approximation by π̃(β;y)

• Also consider the approximation:

π(φ|y) ≈ Normal
(
φ̃, Ṽφ(β̃, φ̃)

)

to the marginal posterior of φ

⋆ Vφ(β̃, φ̃) = I−1
φφ evaluated at the mode

⋆ denote the approximation by π̃(φ|y)
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✬

✫

✩

✪

Approach #1

• If we believe that π̃(β|y) is a good approximation, we could simply report

summary statistics directly from the multivariate Normal distribution

β|y ∼ Normal
(
β̃, Vβ(β̃, φ̃)

)

⋆ report the posterior mean (equivalently, the posterior median)

⋆ posterior credible intervals using the components of Vβ(β̃, φ̃)

• The approach conditions on φ̃

⋆ uncertainty in the true value of φ is ignored

⋆ this is what we do in classical estimation/inference for linear regression

anyway

• Similarly, we could summarize features of the posterior distribution of φ

using the π̃(φ|y) Normal approximation
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✬

✫

✩

✪

Approach #2

• We may not be willing to believe that the approximation is good enough

to summarize features of π(β;y)

⋆ approximation may not be good in small samples

⋆ approximation may not be good in the tails of the distribution

∗ away from the posterior mode

• We could use π̃(β|y) as a proposal distribution in a Metropolis-Hastings

algorithm to sample from the exact posterior π(β;y)

• Let β(r) be the current state in the sequence

(1) generate a proposal β∗ from π̃(β|y)
∗ straightforward since this is a multivariate Normal distribution
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✬

✫

✩

✪

(2) evaluate the acceptance ratio

ar = min

(
1,

π(β∗|y, φ̃)
π(β(r)|y, φ̃)

π̃(β(r)|β∗)

π̃(β∗|β(r))

)

= min

(
1,

π(β∗|y, φ̃)
π(β(r)|y, φ̃)

π̃(β(r))

π̃(β∗)

)

(3) generate a random U ∼ Uniform(0, 1)

∗ reject the proposal if ar < U :

β(r+1) = β(r)

∗ accept the proposal if ar ≥ U :

β(r+1) = β∗

273 BIO 233, Spring 2015



✬

✫

✩

✪

Approach #3

• While approach #2 facilitates sampling from the exact posterior

distribution of β, π(β|y), uncertainty in the value of φ is still ignored

⋆ condition on φ = φ̃

• To sample from the full exact posterior π(β, φ;y) we could implement a

Gibbs sampling scheme and iterate between the full conditionals

⋆ for each, implement a Metropolis-Hastings step using the

approximations we’ve developed

⋆ for the rth sample:

(1) sample β(r) from π(β| φ(r−1);y) with π̃(β|y) as a proposal

(2) sample φ(r) from π(φ| β(r);y) with π̃(φ|y) as a proposal

• Use the approximations to generate starting values for the Markov chain(s)
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