Theory of Generalized Linear Models

Part IV:

Lung cancer surgery

- **Q:** Is there an association between time spent in the operating room and post-surgical outcomes?
 - Could choose from a number of possible response variables, including:
 - \star hospital stay of > 7 days
 - ★ number of major complications during the hospital stay
 - The scientific goal is to characterize the joint distribution between both of these responses and a p-vector of covariates, X
 - ★ age, co-morbidities, surgery type, resection type, etc
 - The first response is *binary* and the second is a *count* variable

$$\star Y \in \{0,1\}$$

 $\star Y \in \{0, 1, 2, \ldots\}$

Q: Can we analyze such response variables with the linear regression model?

 \star specify a mean model

$$\mathsf{E}[Y_i|X_i] = X_i^T \boldsymbol{\beta}$$

 \star estimate β via least squares and perform inference via the CLT

- Given continuous response data, least squares estimation works remarkably well for the linear regression model
 - \star assuming the mean model is correctly specified, $\widehat{m{eta}}_{\text{\tiny OLS}}$ is unbiased
 - ★ OLS is generally robust to the underlying distribution of the error terms
 ∗ Homework #2
 - * OLS is 'optimal' if the error terms are homoskedastic * MLE if $\epsilon \sim \text{Normal}(0, \sigma^2)$ and BLUE otherwise

• For a binary response variable, we could specify a linear regression model:

$$E[Y_i|X_i] = X_i^T \beta$$
$$Y_i|X_i \sim \text{Bernoulli}(\mu_i)$$

where, for notational convenience, $\mu_i = X_i^T \boldsymbol{\beta}$

- As long as this model is correctly specified, $\widehat{m{eta}}_{_{
 m OLS}}$ will still be unbiased
- For the Bernoulli distribution, there is an implicit mean-variance relationship:

$$\mathsf{V}[Y_i|X_i] = \mu_i(1-\mu_i)$$

★ as long as $\mu_i \neq \mu \forall i$, study units will be heteroskedastic ★ non-constant variance

- Ignoring heteroskedasticity results in invalid inference
 - * naïve standard errors (that assume homoskedasticity) are incorrect
- We've seen three possible remedies:
 - (1) transform the response variable
 - (2) use OLS and base inference on a valid standard error

(3) use WLS

• Recall, $\widehat{\boldsymbol{\beta}}_{_{\mathrm{WLS}}}$ is the solution to

$$0 = \frac{\partial}{\partial \beta} RSS(\beta; W)$$

$$0 = \frac{\partial}{\partial \beta} \sum_{i=1}^{n} w_i (y_i - X_i^T \beta)^2$$

$$0 = \sum_{i=1}^{n} X_i w_i (y_i - X_i^T \beta)$$

- For a binary response, we know the form of $V[Y_i]$
 - \star estimate $oldsymbol{eta}$ by setting $oldsymbol{W}=oldsymbol{\Sigma}^{-1}$, a diagonal matrix with elements:

$$w_i = \frac{1}{\mu_i(1-\mu_i)}$$

• From the Gauss-Markov Theorem, the resulting estimator is BLUE

$$\widehat{oldsymbol{eta}}_{ extsf{GLS}} \;=\; (oldsymbol{X}^Toldsymbol{\Sigma}^{-1}oldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{\Sigma}^{-1}oldsymbol{Y}$$

• Note, the least squares equations become

$$0 = \sum_{i=1}^{n} \frac{X_i}{\mu_i (1 - \mu_i)} (y_i - \mu_i)$$

* in practice, we use the IWLS algorithm to estimate $\widehat{\beta}_{GLS}$ while simultaneously accommodating the mean-variance relationship

- We can also show that $\widehat{m{eta}}_{_{\sf GLS}}$, obtained via the IWLS algorithm, is the MLE
 - ★ firstly, note that the likelihood and log-likelihood are:

$$\mathcal{L}(\boldsymbol{\beta}|\boldsymbol{y}) = \prod_{i=1}^{n} \mu_i^{y_i} (1-\mu_i)^{1-y_i}$$
$$\ell(\boldsymbol{\beta}|\boldsymbol{y}) = \sum_{i=1}^{n} y_i \log(\mu_i) + (1-y_i) \log(1-\mu_i)$$

- \star to get the MLE, we take derivatives, set them equal to zero and solve
- ★ following the algebra trail we find that

$$\frac{\partial}{\partial \boldsymbol{\beta}} \ell(\boldsymbol{\beta} | \boldsymbol{y}) = \sum_{i=1}^{n} \frac{X_i}{\mu_i (1 - \mu_i)} (Y_i - \mu_i)$$

• The score equations are equivalent to the least squares equations $\star \hat{\beta}_{\rm GLS}$ is therefore ML

- So, least squares estimation can accommodate implicit heteroskedasticity for binary data by using the IWLS algorithm
 - ★ assuming the model is correctly specified, WLS is in fact optimal!
- However, when modeling binary or count response data, the linear regression model doesn't respect the fact that the outcome is bounded
 - \star the functional that is being modeled is bounded:

* binary:
$$\mathsf{E}[Y_i|X_i] \in (0,1)$$

$$*$$
 count: $\mathsf{E}[Y_i|X_i] \in (0,\infty)$

★ but our current specification of the mean model doesn't impose any restrictions

$$\mathsf{E}[Y_i|X_i] = X_i^T \boldsymbol{\beta}$$

Q: Is this a problem?

Summary

- Our goal is to develop statistical models to characterize the relationship between some response variable, Y, and a vector of covariates, X
- Statistical models consist of two components:
 - ★ a *systematic* component
 - ★ a *random* component
- When moving beyond linear regression analysis of continuous response data, we need to be aware of two key challenges:

(1) sensible specification of the systematic component

(2) proper accounting of any implicit mean-variance relationships arising from the random component

Generalized Linear Models

Definition

- A generalized linear model (GLM) specifies a parametric statistical model for the conditional distribution of a response Y_i given a p-vector of covariates X_i
- Consists of three elements:
 - (1) probability distribution, $Y \sim f_Y(y)$
 - (2) linear predictor, $X_i^T \beta$
 - (3) link function, $g(\cdot)$
 - \star element (1) is the random component
 - \star elements (2) and (3) jointly specify the systematic component

Random component

• In practice, we see a wide range of response variables with a wide range of associated (possible) distributions

Response type	Range	Possible distribution
Continuous	$(-\infty, \ \infty)$	Normal(μ , σ^2)
Binary	$\{0,\ 1\}$	$Bernoulli(\pi)$
Polytomous	$\{1, \ldots, K\}$	$Multinomial(\pi_k)$
Count	$\{0, 1, \ldots, n\}$	Binomial(n , π)
Count	$\{0, 1, \ldots\}$	$Poisson(\mu)$
Continuous	$(0, \ \infty)$	$Gamma(lpha,\ eta)$
Continuous	(0,1)	$Beta(\alpha,\ \beta)$

• Desirable to have a single framework that accommodates all of these

Systematic component

• For a given choice of probability distribution, a GLM specifies a model for the *conditional mean*:

$$\mu_i = \mathsf{E}[Y_i|X_i]$$

- **Q:** How do we specify reasonable models for μ_i while ensuring that we respect the appropriate range/scale of μ_i ?
 - Achieved by constructing a linear predictor $X_i^T \beta$ and relating it to μ_i via a link function $g(\cdot)$:

$$g(\mu_i) = X_i^T \boldsymbol{\beta}$$

★ often use the notation $\eta_i = X_i^T \beta$

The random component

- GLMs form a class of statistical models for response variables whose distribution belongs to the *exponential dispersion family*
 - ★ family of distributions with a pdf/pmf of the form:

$$f_Y(y;\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$

- \star θ is the canonical parameter
- $\star~\phi$ is the dispersion parameter
- $\star \ b(\theta)$ is the cumulant function
- Many common distributions are members of this family

• $Y \sim \text{Bernoulli}(\pi)$

$$f_Y(y;\pi) = \mu^y (1-\mu)^{1-y}$$

$$f_Y(y;\theta,\phi) = \exp\left\{y\theta - \log\left(1 + \exp\{\theta\}\right)\right\}$$

$$\theta = \log\left(\frac{\pi}{1-\pi}\right)$$

$$a(\phi) = 1$$

$$b(\theta) = \log(1 + \exp\{\theta\})$$

$$c(y,\phi) = 0$$

- Many other common distributions are also members of this family
- The canonical parameter has key relationships with both $\mathsf{E}[Y]$ and $\mathsf{V}[Y]$
 - ★ typically varies across study units
 - **\star** index θ by *i*: θ_i
- The dispersion parameter has a key relationship with $\mathsf{V}[Y]$
 - \star may but typically does not vary across study units
 - \bigstar typically no unit-specific index: ϕ
 - ★ in some settings we may have $a(\cdot)$ vary with *i*: $a_i(\phi)$ * e.g. $a_i(\phi) = \phi/w_i$, where w_i is a prior weight
- When the dispersion parameter is known, we say that the distribution is a member of the *exponential family*

Properties

• Consider the likelihood function for a single observation

$$\mathcal{L}(\theta_i, \phi; y_i) = \exp\left\{\frac{y_i \theta_i - b(\theta_i)}{a_i(\phi)} + c(y_i, \phi)\right\}$$

• The log-likelihood is

$$\ell(\theta_i, \phi; y_i) = \frac{y_i \theta_i - b(\theta_i)}{a_i(\phi)} + c(y_i, \phi)$$

• The first partial derivative with respect to θ_i is the score function for θ_i and is given by

$$\frac{\partial}{\partial \theta_i} \ell(\theta_i, \phi; y_i) = U(\theta_i) = \frac{y_i - b'(\theta_i)}{a_i(\phi)}$$

 Using standard results from likelihood theory, we know that under appropriate regularity conditions:

$$E[U(\theta_i)] = 0$$

$$V[U(\theta_i)] = E[U(\theta_i)^2] = -E\left[\frac{\partial U(\theta_i)}{\partial \theta_i}\right]$$

- \star this latter expression is the $(i,i)^{th}$ component of the Fisher information matrix
- Since the score has mean zero, we find that

$$\mathsf{E}\left[\frac{Y_i - b'(\theta_i)}{a_i(\phi)}\right] = 0$$

and, consequently, that

$$\mathsf{E}[Y_i] = b'(\theta_i)$$

• The second partial derivative of $\ell(\theta_i,\phi;y_i)$ is

$$\frac{\partial^2}{\partial \theta_i^2} \ell(\theta_i, \phi; y_i) = - \frac{b''(\theta_i)}{a_i(\phi)}$$

- \star the observed information for the canonical parameter from the i^{th} observation
- This is also the expected information and using the above properties it follows that

$$\mathsf{V}[U(\theta_i)] = \mathsf{V}\left[\frac{Y_i - b'(\theta_i)}{a_i(\phi)}\right] = \frac{b''(\theta_i)}{a_i(\phi)},$$

so that

$$\mathsf{V}[Y_i] = b''(\theta_i)a_i(\phi)$$

- The variance of Y_i is therefore a function of both θ_i and ϕ
- Note that the canonical parameter is a function of μ_i

$$\mu_i = b'(\theta_i) \implies \theta_i = \theta(\mu_i) = b'^{-1}(\mu_i)$$

so that we can write

$$\mathsf{V}[Y_i] = b''(\theta(\mu_i))a_i(\phi)$$

• The function $V(\mu_i) = b''(\theta(\mu_i))$ is called the *variance function*

- ★ specific form indicates the nature of the (if any) mean-variance relationship
- For example, for $Y \sim \text{Bernoulli}(\mu)$

$$a(\phi) = 1$$

$$b(\theta) = \log\left(1 + \exp\{\theta\}\right)$$

$$E[Y] = b'(\theta)$$
$$= \frac{\exp\{\theta\}}{1 + \exp\{\theta\}} = \mu$$

$$V[Y] = b''(\theta)a(\phi)$$
$$= \frac{\exp\{\theta\}}{(1+\exp\{\theta\})^2} = \mu(1-\mu)$$

$$V(\mu) = \mu(1-\mu)$$

The systematic component

• For the exponential dispersion family, the pdf/pmf has the following form:

$$f_Y(y_i;\theta_i,\phi) = \exp\left\{\frac{y_i\theta_i - b(\theta_i)}{a_i(\phi)} + c(y_i,\phi)\right\}$$

 \star this distribution is the random component of the statistical model

- We need a means of specifying how this distribution depends on a vector of covariates X_i
 - ★ the systematic component
- In GLMs we model the conditional mean, $\mu_i = \mathsf{E}[Y_i|X_i]$
 - ★ provides a connection between X_i and distribution of Y_i via the canonical parameter θ_i and the cumulant function $b(\theta_i)$

• Specifically, the relationship between μ_i and X_i is given by

$$g(\mu_i) = X_i^T \boldsymbol{\beta}$$

 \star we 'link' the linear predictor to the distribution of of Y_i via a transformation of μ_i

• Traditionally, this specification is broken down into two parts:

(1) the linear predictor, $\eta_i = X_i^T \boldsymbol{\beta}$

(2) the link function, $g(\mu_i) = \eta_i$

- You'll often find the linear predictor called the 'systematic component'
 * e.g., McCullagh and Nelder (1989) *Generalized Linear Models*
- In practice, one cannot consider one without the other
 - * the relationship between μ_i and X_i is *jointly* determined by β and $g(\cdot)$

The linear predictor, $\eta_i = X_i^T \boldsymbol{\beta}$

- Constructing the linear predictor for a GLM follows the same process one uses for linear regression
- Given a set of covariates X_i , there are two decisions
 - ★ which covariates to include in the model?
 - ★ how to include them in the model?
- For the most part, the decision of which covariates to include should be driven by scientific considerations
 - ★ is the goal estimation or prediction?
 - ★ is there a primary exposure of interest?
 - * which covariates are predictors of the response variable?
 - ★ are any of the covariates effect modifiers? confounders?

- In some settings, practical or data-oriented considerations may drive these decisions
 - \star small sample sizes
 - \star missing data
 - ★ measurement error/missclassification
- How one includes them in the model will also depend on a mixture of scientific and practical considerations
- Suppose we are interested in the relationship between birth weight and risk of death within the first year of life
 - ★ infant mortality
- Note: birth weight is a continuous covariate
 - ★ there are a number of options for including a continuous covariate into the linear predictor

- Let X_w denote the continuous birth weight measure
- A simple model would be to include X_w via a linear term

$$\eta = \beta_0 + \beta_1 X_w$$

- ★ a 'constant' relationship between birth weight and infant mortality
- May be concerned that this is too restrictive a model
 - ★ include additional polynomial terms

$$\eta = \beta_0 + \beta_1 X_w + \beta_2 X_w^2 + \beta_3 X_w^3$$

- \star more flexible than the linear model
- \bigstar but the interpretation of β_2 and β_3 is difficult

- Scientifically, one might only be interested in the 'low birth weight' threshold
 - \star let X_{lbw} = 0/1 if birth weight is >2.5kg/ \leq 2.5kg

 $\eta = \beta_0 + \beta_1 X_{lbw}$

- ★ impact of birth weight on risk of infant mortality manifests solely through whether or not the baby has a low birth weight
- The underlying relationship may be more complex than a simple linear or threshold effect, although we don't like the (lack of) interpretability of the polynomial model
 - \star categorize the continuous covariates into K+1 groups
 - \bigstar include in the linear predictor via K dummy variables

$$\eta = \beta_0 + \beta_1 X_{cat,1} + \ldots + \beta_K X_{cat,K}$$

The link function, $g(\cdot)$

- Given the form of linear predictor $X_i^T \beta$ we need to specify how it is related to the conditional mean μ_i
- As we've noted, the range of values that μ_i can take on may be restricted
 - \star binary data: $\mu_i \in (0,1)$
 - \star count data: $\mu_i \in (0,\infty)$
- One approach would be to estimate β subject to the constraint that all (modeled) values of μ_i respect the appropriate range
- **Q:** What might the drawbacks of such an approach be?

• An alternative is to permit the estimation of β to be 'free' but impose a functional form of the relationship between μ_i and $X_i^T \beta$ *

via the link function
$$g(\cdot)$$

$$g(\mu_i) = X_i^T \boldsymbol{\beta}$$

- We interpret the link function as specifying a transformation of the conditional mean, μ_i
 - \star we are <u>not</u> specifying a transformation of the response Y_i
- The inverse of the link function provides the specification of the model on the scale of μ_i

$$\mu_i = g^{-1} \left(X_i^T \boldsymbol{\beta} \right)$$

★ link functions are therefore usually monotone and have a well-defined inverse

• In linear regression we specify

$$\mu_i = X_i^T \boldsymbol{\beta}$$

 $\star~g(\cdot)$ is the identity link

• In logistic regression we specify

$$\operatorname{og}\left(\frac{\mu_i}{1-\mu_i}\right) = X_i^T \boldsymbol{\beta}$$

 $\star~g(\cdot)$ is the logit or logistic link

• In Poisson regression we specify

$$\log(\mu_i) = X_i^T \beta$$

 $\star~g(\cdot)$ is the log link

• For linear regression also we have that

$$\mu_i = X_i^T \boldsymbol{\beta}$$

★ $g^{-1}(\eta_i) = \eta_i$ is the identity function

• For logistic regression

$$\mu_i = \frac{\exp\left\{X_i^T \boldsymbol{\beta}\right\}}{1 + \exp\left\{X_i^T \boldsymbol{\beta}\right\}}$$

★
$$g^{-1}(\eta_i) = expit(\eta_i)$$
 is the expit function

• For Poisson regression

$$\mu_i = \exp\left\{X_i^T \boldsymbol{\beta}\right\}$$

★ $g^{-1}(\eta_i) = \exp(\eta_i)$ is the exponential function

The canonical link

• Recall that the mean and the canonical parameter are linked via the derivative of the cumulant function

$$\star \mathsf{E}[Y_i] = \mu_i = b'(\theta_i)$$

• An important link function is the *canonical* link:

$$g(\mu_i) = \theta(\mu_i)$$

- \star the function that results by viewing the canonical parameter θ_i as a function of μ_i
- \star inverse of $b'(\cdot)$
- We'll see later that this choice results in some mathematical convenience

Choosing $g(\cdot)$

- In practice, there are often many possible link functions
- For binary response data, one might choose a link function from among the following:

identity:
$$g(\mu_i) = \mu_i$$
log: $g(\mu_i) = \log(\mu_i)$ logit: $g(\mu_i) = \log\left(\frac{\mu_i}{1-\mu_i}\right)$ probit: $g(\mu_i) = \operatorname{probit}(\mu_i)$ complementary log-log: $g(\mu_i) = \log\{-\log(1-\mu_i)\}$

 \star note the logit link is the canonical link function

- We typically choose a specific link function via consideration of two issues:

 (1) respect of the range of values that μ_i can take
 (2) impact on the interpretability of β
- There can be a trade-off between mathematical convenience and interpretability of the model
- We'll spend more time on this later on in the course

Frequentist estimation and inference

• Given an i.i.d sample of size n, the log-likelihood is

$$\ell(\boldsymbol{\beta}, \phi; \boldsymbol{y}) = \sum_{i=1}^{n} \frac{y_i \theta_i - b(\theta_i)}{a_i(\phi)} + c(y_i, \phi)$$

where θ_i is a function of β and is determined by

- ★ the form of $b'(\theta_i) = \mu_i$
- * the choice of the link function via $g(\mu_i) = \eta_i = X_i^T \beta$
- The primary goal is to perform estimation and inference with respect to eta
- Since we've fully specified the likelihood, we can proceed with likelihood-based estimation/inference

Estimation

- There are (p+2) unknown parameters: (β , ϕ)
- To obtain the MLE we need to solve the score equations:

$$\left(\frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \beta_0}, \ \cdots, \ \frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \beta_p}, \ \frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \phi}\right)^T = \mathbf{0}$$

 \star system of (p+2) equations

• The contribution to the score for ϕ by the i^{th} unit is

$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \phi} = - \frac{a_i'(\phi)}{a_i(\phi)^2} \left(y_i \theta_i - b(\theta_i) \right) + c'(y_i, \phi)$$

We can use the chain rule to obtain a convenient expression for the *ith* contribution to the score function for β_j:

$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \beta_j} = \frac{\partial \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \theta_i} \frac{\partial \theta_i}{\partial \mu_i} \frac{\partial \mu_i}{\partial \eta_i} \frac{\partial \eta_i}{\partial \beta_j}$$

• Note the following results:

$$\frac{\partial \ell(\beta, \phi; y_i)}{\partial \theta_i} = \frac{y_i - \mu_i}{a_i(\phi)}$$
$$\frac{\partial \mu_i}{\partial \theta_i} = b''(\theta_i)$$
$$= \frac{\mathsf{V}[Y_i]}{a_i(\phi)}$$
$$\frac{\partial \eta_i}{\partial \beta_j} = X_{j,i}$$
• The score function for β_j can therefore be written as

$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \beta_j} = \sum_{i=1}^n \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i) a_i(\phi)} (y_i - \mu_i)$$

★ depends on the distribution of Y_i solely through $\mathsf{E}[Y_i] = \mu_i$ and $\mathsf{V}[Y_i] = V(\mu_i) a_i(\phi)$

• Suppose $a_i(\phi) = \phi/w_i$. The score equations become

$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \phi} = \sum_{i=1}^{n} - \frac{w_i \left(y_i \theta_i - b(\theta_i)\right)}{\phi^2} + c'(y_i, \phi) = 0$$
$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \beta_j} = \sum_{i=1}^{n} w_i \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i)} (y_i - \mu_i) = 0$$

- Notice that the (p+1) score equations for $oldsymbol{eta}$ do not depend on ϕ
- Consequently, obtaining the MLE of $m{eta}$ doesn't require knowledge of ϕ
 - $\star \phi$ isn't required to be known or estimated (if unknown)
 - \star for example, in linear regression we don't need σ^2 (or $\hat{\sigma}^2$) to obtain

$$\widehat{\boldsymbol{\beta}}_{\text{mle}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

 \star inference does require an estimate of ϕ (see below)

Asymptotic sampling distribution

• From standard likelihood theory, subject to appropriate regularity conditions,

$$\sqrt{n}((\widehat{\boldsymbol{\beta}}_{\mathsf{MLE}}, \widehat{\boldsymbol{\phi}}_{\mathsf{MLE}}) - (\boldsymbol{\beta}, \boldsymbol{\phi})) \longrightarrow \mathsf{MVN}\left(\mathbf{0}, \ \mathcal{I}(\boldsymbol{\beta}, \boldsymbol{\phi})^{-1}\right)$$

• To get the asymptotic variance, we first need to derive expressions for the second partial derivatives:

$$\frac{\partial^2 \ell(\beta, \phi; y_i)}{\partial \beta_j \partial \beta_k} = \frac{\partial}{\partial \beta_k} \left\{ \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i) a_i(\phi)} (y_i - \mu_i) \right\}$$
$$= (y_i - \mu_i) \frac{\partial}{\partial \beta_k} \left\{ \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i) a_i(\phi)} \right\} - \left(\frac{\partial \mu_i}{\partial \eta_i} \right)^2 \frac{X_{j,i} X_{k,i}}{V(\mu_i) a_i(\phi)}$$

$$\begin{aligned} \frac{\partial^2 \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \beta_j \partial \phi} &= \frac{\partial}{\partial \phi} \left\{ \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i) a_i(\phi)} (y_i - \mu_i) \right\} \\ &= -\frac{a_i'(\phi)}{a_i(\phi)^2} \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i)} (y_i - \mu_i) \\ \frac{\partial^2 \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \phi \partial \phi} &= \frac{\partial}{\partial \phi} \left\{ -\frac{a_i'(\phi)}{a_i(\phi)^2} (y_i \theta_i - b(\theta_i)) + c'(y_i, \phi) \right\} \\ &= - \left\{ \frac{a_i(\phi)^2 a_i''(\phi) - 2a_i(\phi) a_i'(\phi)^2}{a_i(\phi)^4} \right\} (y_i \theta_i - b(\theta_i)) + c''(y_i, \phi) \\ &= - K(\phi) (y_i \theta_i - b(\theta_i)) + c''(y_i, \phi) \end{aligned}$$

• Upon taking expectations with respect to Y, we find that

$$- \mathsf{E}\left[\frac{\partial^2 \ell(\boldsymbol{\beta}, \boldsymbol{\phi}; \boldsymbol{y})}{\partial \beta_j \partial \beta_k}\right] = \sum_{i=1}^n \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2 \frac{X_{j,i} X_{k,i}}{V(\mu_i) a_i(\boldsymbol{\phi})}$$

• The second expression has mean zero, so that

$$- \mathsf{E}\left[\frac{\partial^2 \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \beta_j \partial \phi}\right] = 0$$

• Taking the expectation of the negative of the third expression gives:

$$- \mathsf{E}\left[\frac{\partial^2 \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \phi \partial \phi}\right] = \sum_{i=1}^n K(\phi) \left(b'(\theta_i)\theta_i - b(\theta_i)\right) - \mathsf{E}[c''(Y_i, \phi)]$$

 The expected information matrix can therefore be written in block-diagonal form:

$$\mathcal{I}(\boldsymbol{eta},\phi) \;=\; \left[egin{array}{ccc} \mathcal{I}_{etaeta} & \mathbf{0} \ \mathbf{0} & \mathcal{I}_{\phi\phi} \end{array}
ight]$$

where the components of $\mathcal{I}_{\beta\beta}$ are given by the first expression on the previous slide and the $\mathcal{I}_{\phi\phi}$ is given by the last expression on the previous slide

• The inverse of the information matrix is gives the asymptotic variance

$$\mathsf{V}[\widehat{\boldsymbol{\beta}}_{\mathsf{MLE}}, \widehat{\boldsymbol{\phi}}_{\mathsf{MLE}}] = \mathcal{I}(\boldsymbol{\beta}, \phi)^{-1} = \begin{bmatrix} \mathcal{I}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathcal{I}_{\boldsymbol{\phi}\boldsymbol{\phi}}^{-1} \end{bmatrix}$$

- The block-diagonal structure $V[\widehat{\boldsymbol{\beta}}_{\text{MLE}}, \widehat{\boldsymbol{\phi}}_{\text{MLE}}]$ indicates that for GLMs valid characterization of the uncertainty in our estimate of $\boldsymbol{\beta}$ does not require the propagation of uncertainty in our estimation of ϕ
- For example, for linear regression of Normally distributed response data we plug in an estimate of σ^2 into

$$\mathsf{V}[\widehat{\boldsymbol{eta}}_{\scriptscriptstyle\mathsf{MLE}}] \;=\; \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$

 \star we typically don't plug in $\hat{\sigma}^2_{\text{MLE}}$ but, rather, an unbiased estimate:

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (Y_i - X_i^T \hat{\boldsymbol{\beta}}_{\text{mle}})^2$$

 \star further, we don't worry about the fact that what we plug in is an estimate of σ^2

• For GLMs, therefore, estimation of the variance of $\widehat{\beta}_{\text{MLE}}$ proceeds by plugging in the values of $(\widehat{\beta}_{\text{MLE}}, \widehat{\phi})$ into the upper $(p+1) \times (p+1)$ sub-matrix:

$$\widehat{\mathsf{V}}[\widehat{\boldsymbol{eta}}_{\scriptscriptstyle{\mathsf{MLE}}}] \;=\; \widehat{\mathcal{I}}_{\beta\beta}^{-1}$$

where $\widehat{\phi}$ is *any* consistent estimator of ϕ

Matrix notation

• If we set

$$W_i = \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2 \frac{1}{V(\mu_i)a_i(\phi)}$$

then the $(j,k)^{th}$ element of $\mathcal{I}_{\beta\beta}$ can be expressed as

$$\sum_{i=1}^{n} W_i X_{j,i} X_{k,i}$$

• We can therefore write:

$$\mathcal{I}_{\beta\beta} = \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X}$$

where W is an $n \times n$ diagonal matrix with entries W_i , i = 1, ..., n, and X is the design matrix from the specification of the linear predictor

Special case: canonical link function

• For the canonical link function, $\eta_i = g(\mu_i) = \theta_i(\mu_i)$, so that

$$\frac{\partial \theta_i}{\partial \eta_i} = 1 \qquad \Rightarrow \qquad \frac{\partial \mu_i}{\partial \eta_i} = \frac{\partial \mu_i}{\partial \theta_i} \frac{\partial \theta_i}{\partial \eta_i} = \frac{\mathsf{V}[Y_i]}{a_i(\phi)} = V(\mu_i)$$

• The score contribution for β_j by the i^{th} unit simplifies to

$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \beta_j} = \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i) a_i(\phi)} (y_i - \mu_i) = \frac{X_{j,i}}{a_i(\phi)} (y_i - \mu_i)$$

and the components of the sub-matrix for β of the expected information matrix, $\mathcal{I}_{\beta\beta}$, are the summation of

$$-\mathsf{E}\left[\frac{\partial^2 \ell(\boldsymbol{\beta}, \phi; y_i)}{\partial \beta_j \partial \beta_k}\right] = \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2 \frac{X_{j,i} X_{k,i}}{V(\mu_i) a_i(\phi)} = \frac{V(\mu_i) X_{j,i} X_{k,i}}{a_i(\phi)}$$

Hypothesis testing

For the linear predictor X^T_iβ, suppose we partition β = (β₁, β₂) and we are interested in testing:

$$H_0: \boldsymbol{\beta}_1 = \boldsymbol{\beta}_{1,0} \quad \text{vs} \quad H_a: \boldsymbol{\beta}_1 \neq \boldsymbol{\beta}_{1,0}$$

- \star length of $\pmb{\beta}_1$ is $q \leq (p+1)$
- \star β_2 is left arbitrary
- In most settings, β_{1,0} = 0 which represents some form of 'no effect'
 ★ at least given the structure of the model
- Following our review of asymptotic theory, there are three common hypothesis testing frameworks

• Wald test:

$$\begin{array}{l} \star \ \, \mathsf{let} \ \, \widehat{\boldsymbol{\beta}}_{_{\mathsf{MLE}}} = (\widehat{\boldsymbol{\beta}}_{1,_{\mathsf{MLE}}}, \widehat{\boldsymbol{\beta}}_{2,_{\mathsf{MLE}}}) \\ \star \ \, \mathsf{under} \ \, H_0 \end{array}$$

$$(\widehat{\boldsymbol{\beta}}_{1,\mathrm{mle}} - \boldsymbol{\beta}_{1,0})^T \widehat{\mathsf{V}}[\widehat{\boldsymbol{\beta}}_{1,\mathrm{mle}}]^{-1} (\widehat{\boldsymbol{\beta}}_{1,\mathrm{mle}} - \boldsymbol{\beta}_{1,0}) \longrightarrow_d \chi_q^2$$

where $\widehat{\mathsf{V}}[\widehat{\boldsymbol{\beta}}_{1,\mathsf{MLE}}]$ is the inverse of the $q \times q$ sub-matrix of $\mathcal{I}_{\beta\beta}$ corresponding to $\boldsymbol{\beta}_1$, evaluated at $\widehat{\boldsymbol{\beta}}_{1,\mathsf{MLE}}$

Score test:

★ let $\hat{\beta}_{0,\text{MLE}} = (\beta_{1,0}, \hat{\beta}_{2,\text{MLE}})$ denote the MLE under H_0 ★ under H_0

$$\boldsymbol{U}(\widehat{\boldsymbol{\beta}}_{0,\mathrm{mle}};\boldsymbol{y})\mathcal{I}(\widehat{\boldsymbol{\beta}}_{0,\mathrm{mle}})^{-1}\boldsymbol{U}(\widehat{\boldsymbol{\beta}}_{0,\mathrm{mle}};\boldsymbol{y}) \longrightarrow_{d} \chi_{q}^{2}$$

• Likelihood ratio test:

★ obtain the 'best fitting model' without restrictions: $\hat{\theta}_{\text{MLE}}$ ★ obtain the 'best fitting model' under H_0 : $\hat{\theta}_{0,\text{MLE}}$

 \star under H_0

$$2(\ell(\widehat{\boldsymbol{\beta}}_{\text{mle}};\boldsymbol{y}) - \ell(\widehat{\boldsymbol{\beta}}_{0,\text{mle}};\boldsymbol{y})) \longrightarrow_{d} \chi_{q}^{2}$$

Iteratively re-weighted least squares

• We saw that the score equation for β_j is

$$\frac{\partial \ell(\boldsymbol{\beta}, \phi; \boldsymbol{y})}{\partial \beta_j} = \sum_{i=1}^n \frac{\partial \mu_i}{\partial \eta_i} \frac{X_{j,i}}{V(\mu_i) a_i(\phi)} (y_i - \mu_i) = 0$$

- \star estimation of ${\pmb\beta}$ requires solving (p+1) of these equations simultaneously
- \star tricky because β appears in several places
- A general approach to finding roots is the Newton-Raphson algorithm
 - \star iterative procedure based on the gradient
- For a GLM, the gradient is the derivative of the score function with respect to ${\boldsymbol{\beta}}$
 - \star these form the components of the observed information matrix $oldsymbol{I}_{etaeta}$

- Fisher scoring is an adaptation of the Newton-Raphson algorithm that uses the expected information, $\mathcal{I}_{\beta\beta}$, rather than $I_{\beta\beta}$, for the update
- Suppose the current estimate of ${oldsymbol{eta}}$ is $\widehat{{oldsymbol{eta}}}^{(r)}$
 - ★ compute the following:

$$\eta_i^{(r)} = X_i^T \widehat{\boldsymbol{\beta}}^{(r)}$$

$$\mu_i^{(r)} = g^{-1} \left(\eta_i^{(r)} \right)$$

$$W_i^{(r)} = \left(\left. \frac{\partial \mu_i}{\partial \eta_i} \right|_{\eta_i^{(r)}} \right)^2 \frac{1}{V \left(\mu_i^{(r)} \right)}$$

$$z_i^{(r)} = \eta_i^{(r)} + \left(y_i - \mu_i^{(r)} \right) \left. \frac{\partial \eta_i}{\partial \mu_i} \right|_{\mu_i^{(r)}}$$

- \star W_i is called the 'working weight'
- \star z_i is called the 'adjusted response variable'

 The updated value of
 β is obtained as the WLS estimate to the regression of Z on X:

$$\widehat{\boldsymbol{\beta}}^{(r+1)} = (\boldsymbol{X}^T \boldsymbol{W}^{(r)} \boldsymbol{X})^{-1} (\boldsymbol{X}^T \boldsymbol{W}^{(r)} \boldsymbol{Z}^{(r)})$$

- $\star~{\pmb X}$ is the $n\times (p+1)$ design matrix from the initial specification of the model
- ★ $W^{(r)}$ is a diagonal $n \times n$ matrix with entries $\{W_1^{(r)}, \ldots, W_n^{(r)}\}$ ★ $Z^{(r)}$ is the *n*-vector $(z_1^{(r)}, \ldots, z_n^{(r)})$
- Iterate until the value of $\widehat{\beta}$ converges * i.e. the difference between $\widehat{\beta}^{(r+1)}$ and $\widehat{\beta}^{(r)}$ is 'small'

Fitting GLMs in R with glm()

• A generic call to glm() is given by

```
fit0 <- glm(formula, family, data, ...)</pre>
```

- \star many other arguments that control various aspects of the model/fit
- ★ ?glm for more information
- 'data' specifies the data frame containing the response and covariate data
- 'formula' specifies the structure of linear predictor, $\eta_i = X_i^T \boldsymbol{\beta}$
 - ★ input is an object of class 'formula'
 - ★ typical input might be of the form:

$$\rm Y~\sim~X1$$
 + X2 + X3

★ ?formula for more information

- 'family' jointly specifies the probability distribution $f_Y(\cdot)$, link function $g(\cdot)$ and variance function $V(\cdot)$
 - \star most common distributions have already been implemented
 - \star input is an object of class 'family'
 - $\ast\,$ object is a list of elements describing the details of the GLM
- The call for a standard logistic regression for binary data might be of the form:

```
glm(Y \sim X1 + X2, family=binomial(), data=myData)
```

```
or, more simply,
```

glm(Y \sim X1 + X2, family=binomial, data=myData)

```
• A more detailed look at family objects:
```

```
> ##
> ?family
> poisson()
Family: poisson
Link function: log
> ##
> myFamily <- binomial()</pre>
> myFamily
Family: binomial
Link function: logit
> names(myFamily)
 [1] "family"
             "link"
                            "linkfun"
                                          "linkinv"
                                                      "variance"
     "dev.resids" "aic"
 [8] "mu.eta" "initialize" "validmu" "valideta" "simulate"
> myFamily$link
[1] "logit"
```

```
> myFamily$variance
function (mu)
mu * (1 - mu)
>
> ## Changing the link function
> ## * for a true 'log-linear' model we'd need to make appropriate
        changes to the other components of the family object
> ##
> ##
> myFamily$link <- "log"</pre>
>
> ## Standard logistic regression
> ##
> fit0 <- glm(Y ~ X, family=binomial)</pre>
>
> ## log-linear model for binary data
> ##
> fit1 <- glm(Y ~ X, family=binomial(link = "log"))</pre>
>
> ## which is (currently) not the same as
> ##
> fit1 <- glm(Y ~ X, family=myFamily)</pre>
```

• Once you've fit a GLM you can examine the components of the glm object:

>

> names(fit0)

[1]	"coefficients"	"residuals"	"fitted.val	lues"	"effects"		
[5]	"R"	"rank"	"qr"		"family"		
[9]	"linear.predictors	s" "deviance"	"aic"		"null.deviance"		
[13]	"iter"	"weights"	"prior.weig	rior.weights"		"df.residual"	
[17]	"df.null"	"у"	"converged'	"converged"		"boundary"	
[21]	"model"	"call"	"formula"	ormula"		"terms"	
[25]	"data"	"offset"	"control"		"method"		
[29]	"contrasts"	"xlevels"					
>							
> ##							
<pre>> names(summary(fit0))</pre>							
[1]	"call"	"terms"	"family"	"deviance"		"aic"	
[6]	"contrasts"	"df.residual"	"null.deviance"	"df.null"		"iter"	
[11]	"deviance.resid" '	"coefficients"	"aliased"	"dispersion"		"df"	
[16]	"cov.unscaled"	"cov.scaled"					
)	

The deviance

• Recall, the contribution to the log-likelihood by the i^{th} study unit is

$$\ell(\theta_i, \phi; y_i) = \frac{y_i \theta_i - b(\theta_i)}{a_i(\phi)} + c(y_i, \phi)$$

• Implicitly, θ_i is a function of μ_i so we could write the log-likelihood contribution as a function of μ_i :

$$\ell(\theta_i, \phi; y_i) \Rightarrow \ell(\mu_i, \phi; y_i)$$

• Given $\widehat{\boldsymbol{\beta}}_{\scriptscriptstyle{\mathsf{MLE}}}$, we can compute each $\hat{\mu}_i$ and evaluate

$$\ell(\widehat{\boldsymbol{\mu}}, \phi; \boldsymbol{y}) = \sum_{i=1}^{n} \ell(\widehat{\mu}_i, \phi; y_i),$$

★ the maximum log-likelihood

- $\ell(\hat{\mu}, \phi; y)$ is the maximum achievable log-likelihood given the structure of the model
 - * μ_i is modeled via $g(\mu_i) = \eta_i = X_i^T \boldsymbol{\beta}$
 - \star any other value of β would correspond to a lower value of the log-likelihood
- The <u>overall</u> maximum achievable log-likelihood, however, is one based on a *saturated model*
 - ★ same number of parameters as observations
 - \star each observation is its own mean: $\mu_i = y_i$

$$\ell(\boldsymbol{y},\phi;\boldsymbol{y}) = \sum_{i=1}^{n} \ell(y_i,\phi;y_i),$$

★ this represents the 'best possible fit'

• The difference

$$D^*(\boldsymbol{y}, \widehat{\boldsymbol{\mu}}) = 2 \left[\ell(\boldsymbol{y}, \phi; \boldsymbol{y}) - \ell(\widehat{\boldsymbol{\mu}}, \phi; \boldsymbol{y}) \right]$$

is called the *scaled deviance*

• Let

- \star $\tilde{\theta}_i$ be the value of θ_i based on setting $\mu_i = y_i$
- $\star \hat{\theta}_i$ be the value of θ_i based on setting $\mu_i = \hat{\mu}_i$

• If we take
$$a_i(\phi) = \phi/w_i$$
, then

$$D^*(\boldsymbol{y}, \widehat{\boldsymbol{\mu}}) = \sum_{i=1}^n \frac{2w_i}{\phi} \left[y_i(\widetilde{\theta}_i - \widehat{\theta}_i) - b(\widetilde{\theta}_i) + b(\widehat{\theta}_i) \right] = \frac{D(\boldsymbol{y}, \widehat{\boldsymbol{\mu}})}{\phi}$$

• $D(\boldsymbol{y}, \widehat{\boldsymbol{\mu}})$ is the *deviance* for the current model

D(y, µ̂) is used as a measure of goodness of fit of the model to the data
 ★ measures the 'discrepancy' between the fitted model and the data

• For the Normal distribution, the deviance is the sum of squared residuals:

$$D(\boldsymbol{y}, \widehat{\boldsymbol{\mu}}) = \sum_{i=1}^{n} (y_i - \widehat{\mu}_i)^2$$

 \star has an exact χ^2 distribution

* compare two nested models by taking the difference in their deviances

- $\ast\,$ distribution of the difference is still a χ^2
- * the likelihood ratio test
- Beyond the Normal distribution the deviance is not χ^2
- But we still can rely on a χ^2 approximation to the asymptotic sampling distribution of the *difference* in the deviance between two models

Residuals

- In the context of regression modeling, residuals are used primarily to
 - \star examine the adequacy of model fit
 - * functional form for terms in the linear predictor
 - * link function
 - * variance function
 - \star investigate potential data issues
 - * e.g. outliers
- Interpreted as representing variation in the outcome that is not explained by the model
 - \star variation once the systematic component has been accounted for
 - ★ residuals are therefore *model-specific*

- An ideal residual would look like an i.i.d sample when the correct mean model is fit
- For linear regression, we often consider the *raw* or *response residual*

$$r_i = y_i - \hat{\mu}_i$$

 \star if the ϵ_i are homoskedastic then $\{r_1, \ldots, r_n\}$ will be i.i.d

- For GLMs the underlying probability distribution is often skewed and exhibits a mean-variance relationship
- *Pearson residuals* account for the heteroskedasticity via standardization

$$r_i^p = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

★ Pearson χ^2 statistic for goodness-of-fit is equal to $\sum_i (r_i^p)^2$

• The *deviance residual* is defined as

$$r_i^d = \operatorname{sign}(y_i - \hat{\mu}_i)\sqrt{d_i}$$

where d_i is the contribution to $D(\boldsymbol{y}, \hat{\boldsymbol{\mu}})$ from the i^{th} study unit \star why is this a reasonable quantity to consider?

- Pierce and Schafer (JASA, 1986) examined various residuals for GLMs
 ★ conclude that deviance residuals are 'a very good choice'
 - \star very nearly normally distributed after one allows for the discreteness
 - \star continuity correction which replaces

$$y_i \Rightarrow y_i \pm \frac{1}{2}$$

in the definition of the residual

* +/- chosen to move the value closer to $\hat{\mu}_i$

• All three types of residuals are returned by glm() in R:

```
> ## generic (logistic regression) model
> fit0 <- glm(Y ~ X, family=binomial)</pre>
>
> args(residuals.glm)
function (object, type = c("deviance", "pearson", "working",
    "response", "partial"), ...)
NULL
>
> ## deviance residuals are the default
> residual(fit0)
. . .
>
> ## extracting the pearson residuals
> residual(fit0, type="pearson")
. . .
```

The Bayesian solution

• A GLM is specified by:

$$Y_i | X_i \sim f_Y(y; \mu_i, \phi)$$

$$\mathsf{E}[Y_i | X_i] = g^{-1}(X_i^T \beta) = \mu_i$$

$$\mathsf{V}[Y_i | X_i] = V(\mu_i) a_i(\phi)$$

- \star $f_Y(\cdot)$ is a member of the exponential dispersion family
- $\star~\beta$ is a vector of regression coefficients
- $\star~\phi$ is the dispersion parameter
- $(\boldsymbol{\beta}, \phi)$ are the unknown parameters
 - ★ note there might not necessarily be a dispersion parameter
 - ★ e.g. for binary or Poisson data

• Required to specify a prior distribution for (β, ϕ) which is often factored into

$$\pi(\boldsymbol{\beta}, \phi) = \pi(\boldsymbol{\beta}|\phi)\pi(\phi)$$

- For $\beta | \phi$, strategies include
 - \star a flat, non-informative prior
 - * recover the classical analysis
 - $\ast\,$ posterior mode corresponding to a uniform prior density is the MLE
 - \star an informative prior
 - * e.g., $oldsymbol{eta} \sim \mathsf{MVN}(oldsymbol{eta}_0, \, \Sigma_eta)$
 - * convenient choice given the computational methods described below
- Unfortunately, specifying a prior for ϕ is less prescriptive
 - \star consider specific models in Parts V-VII of the notes

• Given an independent sample Y_1, \ldots, Y_n , the likelihood is the product of n terms:

$$\mathcal{L}(\boldsymbol{\beta}, \phi | \boldsymbol{y}) = \prod_{i=1}^{n} f_{Y}(y_{i} | \mu_{i}, \phi)$$

• Apply Bayes' Theorem to get the posterior:

```
\pi(oldsymbol{eta},\phi|oldsymbol{y}) \propto \mathcal{L}(oldsymbol{eta},\phi|oldsymbol{y})\pi(oldsymbol{eta},\phi)
```

Computation

- For most GLMs, the posterior won't be of a convenient form
 - \star analytically intractable
- Use Monte Carlo methods to summarize the posterior distribution
- We've seen that the Gibbs sampler and the Metropolis-Hastings algorithm are powerful tools for generating samples from the posterior distribution
 * need to specify a proposal distribution
 - ★ need to specify starting values for the Markov chain(s)
- Towards this, let $\tilde{\theta} = (\tilde{\beta}, \tilde{\phi})$ denote the posterior mode

• Consider a Taylor series expansion of the log-posterior at $\hat{\theta}$:

$$\log \pi(\boldsymbol{\theta}|\boldsymbol{y}) = \log \pi(\widetilde{\boldsymbol{\theta}}|\boldsymbol{y}) \\ + (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}}) \frac{\partial}{\partial \boldsymbol{\theta}} \log \pi(\boldsymbol{\theta}|\boldsymbol{y}) \Big|_{\boldsymbol{\theta} = \widetilde{\boldsymbol{\theta}}} \\ + \frac{1}{2} (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}})^T \left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}} \log \pi(\boldsymbol{\theta}|\boldsymbol{y}) \right]_{\boldsymbol{\theta} = \widetilde{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}}) \\ + \dots$$

- Ignore the $\log \pi(\widetilde{\theta}|y)$ term because, as a function of θ , it is constant
- The linear term in the expansion disappears because the first derivative of the log-posterior at the mode is equal to 0
- The middle component of the quadratic term is approximately the negative observed information matrix, evaluated at the mode

• We therefore get

$$\log \pi(\boldsymbol{\theta}|\boldsymbol{y}) \approx -\frac{1}{2} (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}})^T \boldsymbol{I}(\widetilde{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \widetilde{\boldsymbol{\theta}})$$

which is the log of the kernel for a Normal distribution

 So, towards specifying a proposal distribution for the Metropolis-Hastings algorithm, we can consider the following Normal approximation to the posterior

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \approx \operatorname{Normal}\left(\widetilde{\boldsymbol{\theta}}, \ \boldsymbol{I}(\widetilde{\boldsymbol{\theta}})^{-1}\right)$$

Q: How can we make use of this for sampling from the posterior $\pi(\beta, \phi | y)$?

- \star there are many approaches that one could take
- \star we'll describe three

- First, we need to find the mode, $(\widetilde{\boldsymbol{\beta}}, \widetilde{\phi})$
 - \bigstar the value that maximizes $\pi(\pmb{\beta}, \phi | \pmb{y})$
 - ★ given a non-informative prior:

$$(\widetilde{\pmb{\beta}},\widetilde{\phi}) ~\equiv~ (\widehat{\pmb{\beta}}_{\rm mle},\widehat{\phi}_{\rm mle})$$

- \ast obtain the mode via the IRLS algorithm
- \star otherwise, use any other standard optimization technique
 - \ast e.g. Newton-Raphson
 - $* \ {\rm could} \ {\rm use} \ (\widehat{\pmb{\beta}}_{\rm \tiny MLE}, \widehat{\phi}_{\rm \tiny MLE})$ as a starting point
- Next, recall the block-diagonal structure of the information matrix for a GLM:

$$\mathcal{I}(\boldsymbol{eta},\phi) \;=\; \left[egin{array}{ccc} \mathcal{I}_{etaeta} & \mathbf{0} \ \mathbf{0} & \mathcal{I}_{\phi\phi} \end{array}
ight]$$
• Exploit this and consider the approximation:

$$\pi(\boldsymbol{\beta}|\boldsymbol{y}) \approx \operatorname{Normal}\left(\widetilde{\boldsymbol{\beta}}, V_{\boldsymbol{\beta}}(\widetilde{\boldsymbol{\beta}}, \widetilde{\phi})\right)$$

to the marginal posterior of ${\boldsymbol{\beta}}$

$$\star~V_{eta}(\widetilde{oldsymbol{eta}}, ilde{\phi})=oldsymbol{I}_{etaeta}^{-1}$$
 evaluated at the mode

\star denote the approximation by $\widetilde{\pi}(\boldsymbol{\beta}; \boldsymbol{y})$

• Also consider the approximation:

$$\pi(\phi|\boldsymbol{y}) \approx \operatorname{Normal}\left(\tilde{\phi}, \ \widetilde{V}_{\phi}(\boldsymbol{\widetilde{\beta}}, \boldsymbol{\widetilde{\phi}})\right)$$

to the marginal posterior of $\boldsymbol{\phi}$

 $\star V_{\phi}(\widetilde{oldsymbol{eta}},\widetilde{\phi}) = oldsymbol{I}_{\phi\phi}^{-1}$ evaluated at the mode

 \star denote the approximation by $\widetilde{\pi}(\phi|\boldsymbol{y})$

Approach #1

• If we believe that $\tilde{\pi}(\beta|y)$ is a good approximation, we could simply report summary statistics directly from the multivariate Normal distribution

$$\boldsymbol{\beta} | \boldsymbol{y} \sim \operatorname{Normal} \left(\widetilde{\boldsymbol{\beta}}, V_{\beta}(\widetilde{\boldsymbol{\beta}}, \widetilde{\phi}) \right)$$

★ report the posterior mean (equivalently, the posterior median)

- * posterior credible intervals using the components of $V_{\beta}(\widetilde{\boldsymbol{\beta}}, \widetilde{\phi})$
- The approach conditions on $ilde{\phi}$
 - \bigstar uncertainty in the true value of ϕ is ignored
 - ★ this is what we do in classical estimation/inference for linear regression anyway
- Similarly, we could summarize features of the posterior distribution of ϕ using the $\tilde{\pi}(\phi|\mathbf{y})$ Normal approximation

Approach #2

- We may not be willing to believe that the approximation is good enough to summarize features of $\pi(\beta; y)$
 - ★ approximation may not be good in small samples
 - \star approximation may not be good in the tails of the distribution
 - \ast away from the posterior mode
- We could use $\tilde{\pi}(\boldsymbol{\beta}|\boldsymbol{y})$ as a proposal distribution in a Metropolis-Hastings algorithm to sample from the exact posterior $\pi(\boldsymbol{\beta}; \boldsymbol{y})$
- Let $\beta^{(r)}$ be the current state in the sequence
 - (1) generate a proposal $oldsymbol{eta}^*$ from $\widetilde{\pi}(oldsymbol{eta}|oldsymbol{y})$
 - * straightforward since this is a multivariate Normal distribution

(2) evaluate the acceptance ratio

$$a_{r} = \min\left(1, \frac{\pi(\boldsymbol{\beta}^{*}|\boldsymbol{y}, \tilde{\boldsymbol{\phi}})}{\pi(\boldsymbol{\beta}^{(r)}|\boldsymbol{y}, \tilde{\boldsymbol{\phi}})} \frac{\widetilde{\pi}(\boldsymbol{\beta}^{(r)}|\boldsymbol{\beta}^{*})}{\widetilde{\pi}(\boldsymbol{\beta}^{*}|\boldsymbol{\beta}^{(r)})}\right)$$
$$= \min\left(1, \frac{\pi(\boldsymbol{\beta}^{*}|\boldsymbol{y}, \tilde{\boldsymbol{\phi}})}{\pi(\boldsymbol{\beta}^{(r)}|\boldsymbol{y}, \tilde{\boldsymbol{\phi}})} \frac{\widetilde{\pi}(\boldsymbol{\beta}^{(r)})}{\widetilde{\pi}(\boldsymbol{\beta}^{*})}\right)$$

(3) generate a random $U \sim \text{Uniform}(0, 1)$

* reject the proposal if $a_r < U$:

$$\boldsymbol{\beta}^{(r+1)} \;=\; \boldsymbol{\beta}^{(r)}$$

* *accept* the proposal if $a_r \ge U$:

$$\boldsymbol{eta}^{(r+1)} = \boldsymbol{eta}^*$$

Approach #3

- While approach #2 facilitates sampling from the exact posterior distribution of β, π(β|y), uncertainty in the value of φ is still ignored
 ★ condition on φ = φ
- To sample from the full exact posterior $\pi(\beta, \phi; y)$ we could implement a Gibbs sampling scheme and iterate between the full conditionals
 - ★ for each, implement a Metropolis-Hastings step using the approximations we've developed
 - \star for the r^{th} sample:
 - (1) sample $\beta^{(r)}$ from $\pi(\beta | \phi^{(r-1)}; y)$ with $\widetilde{\pi}(\beta | y)$ as a proposal
 - (2) sample $\phi^{(r)}$ from $\pi(\phi | \boldsymbol{\beta}^{(r)}; \boldsymbol{y})$ with $\widetilde{\pi}(\phi | \boldsymbol{y})$ as a proposal

• Use the approximations to generate starting values for the Markov chain(s)