Limitations of linear models

GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

Course overview

- Chapter 1: Review and limits of linear model and Poisson regressions
- Chapter 2: Logistic (Binomial) regression
- Chapter 3: Interpreting and plotting GLMs
- Chapter 4: Multiple regression with GLMs

Workhorse of data science

¹ US Department of Agriculture https://www.nal.usda.gov/exhibits/ipd/localfoods/exhibits/show/farmtotable/the-roads-of-rural-america

Linear models

- How can linear coefficients explain the data?
- Intercept for baseline effect ullet
- Slope for linear predictor
- $y = eta_0 + eta_1 x + \epsilon$

Linear models in R

 $lm(y \sim x, data = dat)$

Assumption of linearity

datacamp

Assumption of normality

datacamp

Assumption of continuous variables

R datacamp

•

R datacamp

Chick diets impact on weight

- ChickWeight data from datasets package
- ChickWeightsEnd last observation from study
- How do diets 2, 3, and 4 compare to diet 1?

lm(formula = weight ~ Diet, data = ChickWeightEnd)

```
Call:

lm(formula = weight ~ Diet, data = ChickWeightEnd)

Coefficients:

(Intercept) Diet2 Diet3 Diet4

177.75 36.95 92.55 60.81
```


What about survivorship or counts?

- What about chick survivorship or chick counts?
- Neither are continuous!
- We need a new tool
- The generalized linear model

Generalized linear model

- Similar to linear models
- Non-normal error distribution
- Link functions: $y=\psi(b_0+b_1x+\epsilon)$

GLMs in R

glm(y ~ x, data = data, family = "gaussian")

• lm() same as glm(..., family = "gaussian")

Let's practice!!

Poisson regression GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

R datacamp

Poisson distribution

- Discrete integers: x = 0, 1, 2, 3, ... \bullet
- Mean and variance parameter λ
- $P(x) = rac{\lambda^x e^{-\lambda}}{x!}$
- Fixed area/time (e.g., goal per one game)

Poisson distribution in R

dpois(x = ..., lambda = ...)

GLM with R requirements

- Discrete counts: 0, 1, 2, 3... \bullet
- Defined area and time
- Log-scale coefficients

GLM with Poisson in R

glm(y ~ x, data = dat, family = 'poisson')

When not to use Poisson distribution

- Non-count or non-positive data (e.g., 1.4 or -2)
- Non-constant sample area or time (e.g., trees km^{-1} vs. trees m^{-1})
- Mean \gtrsim 30
- Over-dispersed data
- Zero-inflated data

Formula intercepts

- Comparison or intercept
- Comparison formula = y ~ x
- Intercept formula = y ~ x 1

Goals per game

- Two players, which approach do we use?
- If we want to know difference between players, use comparison:

glm(goal ~ player, data = scores, family = "poisson")

• If we want to know average per player, use intercepts:

glm(goal ~ player - 1, data = scores, family = "poisson")

Let's practice! GENERALIZED LINEAR MODELS IN R

Basic Im() functions with glm() GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

Interacting with model objects

- Allow interaction with outputs
- Base R functions apply to glm()
- Useful shortcuts

Model print

• print() usually default

print(poisson_out)

Call: glm(formula	= y ~ x, f	amily = "pois	son", data = dat)		
Coefficients:					
(Intercept)	Х				
-1.43036 0	.05815				
Degrees of Freedom: 29 Total (i.e. Null); 28 Residual					
Null Deviance:	35.63				
Residual Deviance:	30.92	AIC: 66.02			

Model summary

summary() provides more details

summary(poisson_out)

#					
Deviance Residuals:					
Min 1Q Median 3Q Max					
-1.6547 -0.9666 -0.7226 0.3830 2.3022					
Coefficients:					
Estimate Std. Error z value Pr(> z)					
(Intercept) -1.43036 0.59004 -2.424 0.0153 *					
x 0.05815 0.02779 2.093 0.0364 *					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
(Dispersion parameter for poisson family taken to be 1)					
Null deviance: 35.627 on 29 degrees of freedom					
Residual deviance: 30.918 on 28 degrees of freedom					
AIC: 66.024					
Number of Fisher Scoring iterations: 5					

Tidy output

- **Tidyverse** provides standardized model outputs
- tidy() from Broom package

library(broom) tidy(poisson_out)

	term	estimate	std.error	statistic	p.value
1	(Intercept)	-1.43035579	0.59003923	-2.424171	0.01534339
2	X	0.05814858	0.02778801	2.092578	0.03638686

Regression coefficients

coef() prints regression coefficients

coef(poisson_out)

(Intercept)	X		
-1.43035579	0.05814858		

Confidence intervals

confint() estimates the confidence intervals

confint(poisson_out)

Waiting for profiling to be done... 2.5 % 97.5 % (Intercept) -2.725545344 -0.3897748 0.005500767 0.1155564Χ

Predictions

- predict(model, new_data)
- new_data argument:
 - Unspecified: predict() returns predictions based on original data used to fit the model. 0
 - Specified: predict() returns predictions for new_data. 0

Fire injury dataset

- Daily civilian injuries
- Louisville, KY
- Count data, many zeros

Let's practice! GENERALIZED LINEAR MODELS IN R

