Poisson regression coefficients

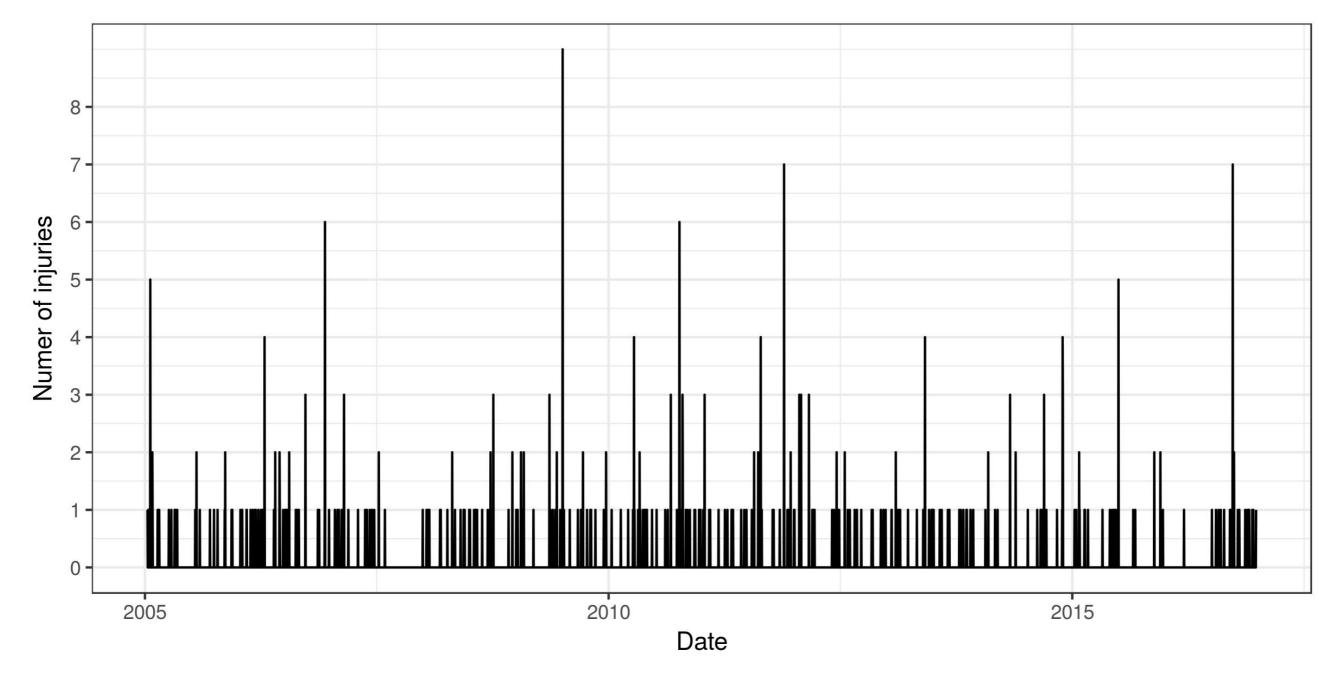
GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

Chapter overview

- **Describing Poisson regressions**
- Plotting Poisson GLMs with ggplot2
- Describing logistic regression with odds-ratios
- Plotting binomial GLMs with ggplot2

Fire injury data



R datacamp

Linear model coefficients overview

- Estimate expected daily injury per month
- Estimate reference intercept
- Estimate intercept for other months

Linear model equation

- $y \sim eta_0 + eta_m x_m + \ldots + \epsilon$
- β_0 : Reference intercept
- β_m : Month m effect
- y injuries per day (e.g., 1, 0, 4)
- x dummy variable to code for month (0 or 1)
- *m* corresponds to month intercept, dummy variable

Linear model results

- β_0 is expected (or average) in reference month
- β_m is effect of month m (or difference from reference)
- e.g., $\beta_0 + \beta_m$ = ave. daily injuries for month m
- More complicated models covered in chapter 4
- Linear models are additive

Poisson model

- $y \sim ext{Poisson}(\lambda)$
- Link: $\lambda = e^{(eta_0 + eta_m x_m + \epsilon)}$
- Multiplicative
- Example results:
 - $\beta_0 \times \beta_1 = \ln(\text{mean daily injuries for month } m)$
 - Take exponential to convert to raw units 0

Difference between Poisson and linear models

- Poisson model: $e^{\beta_0 imes \beta_m} = ext{expected daily injuries for month } m$
- Linear model: $\beta_0 + \beta_m =$ expected daily injuries for month m

Extract in R

poisson_out <- glm(y ~ x, family = 'poisson')</pre> coef(poisson_out) exp(coef(poisson_out))

Tidy solution

library(broom) poisson_out <- glm(y ~ x, family = 'poisson')</pre> tidy(poisson_out, exponentiate = TRUE)

Statistical inferences

- Similar as linear model on link-scale
- Do coefficients differ from zero?
- On data-scale, different
- Do coefficients differ from 1?
- **Exponential**-scale rather than raw-scale \bullet

Let's practice! GENERALIZED LINEAR MODELS IN R

Plotting Poisson regression

GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

When to use geom_smooth with Poisson

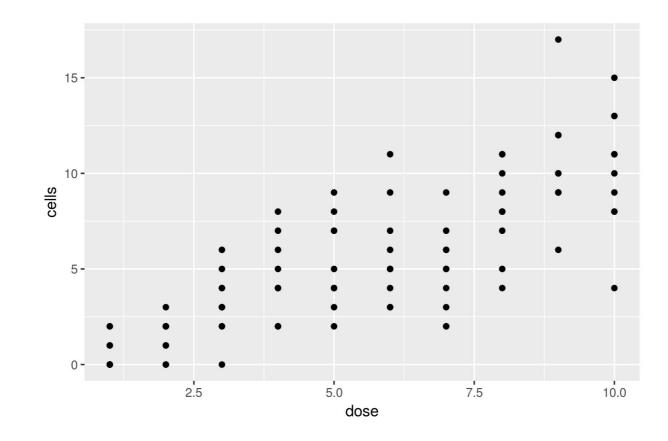
- Works best with continuous predictor variables
- e.g., increasing dose and number of cells with cancer per ${\sf cm}^2$
- Otherwise, use boxplot or similar plotting tool

Cancer cells dose study

- Simulate data
- Dose-response
 - x: Dose
 - y: Number of cancer cells per cm^2

Plot points

ggplot(data = dat, aes(x = dose, y = cells)) + geom_point()

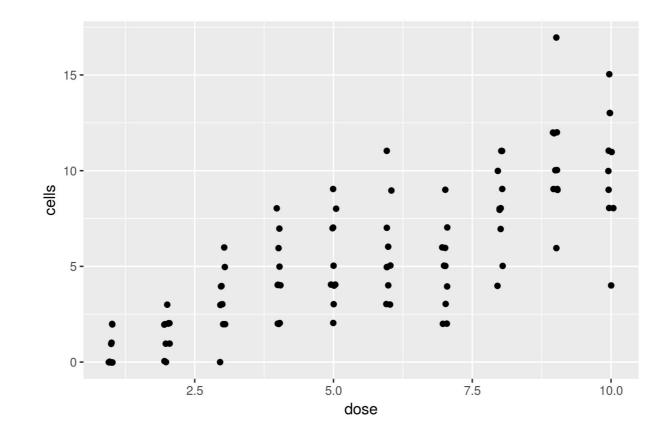


R datacamp

Jitter points

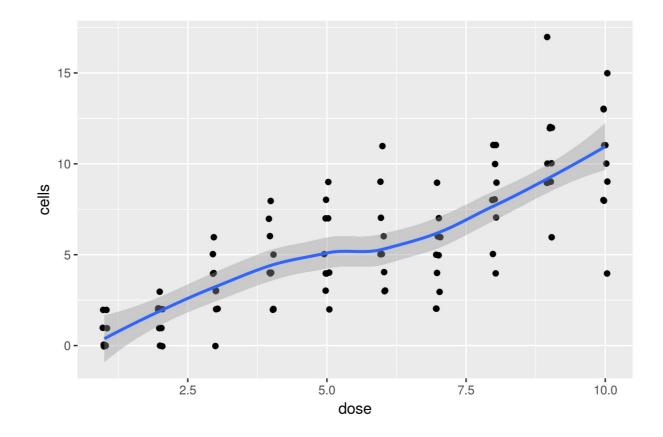
ICOMD

ggplot(data = dat, aes(x = dose, y = cells)) + geom_jitter(width = 0.05, height = 0.05)



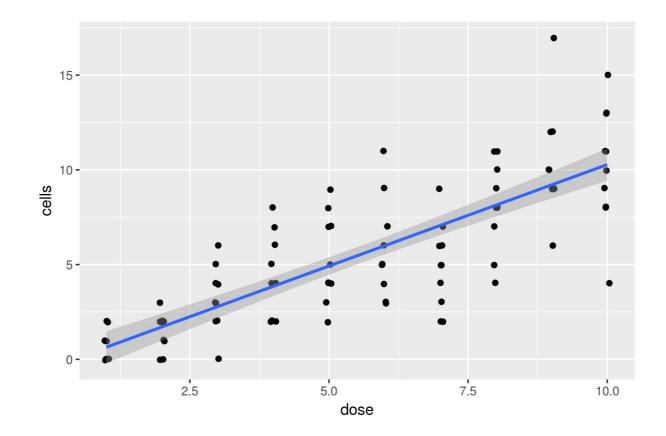
geom_smooth()

ggplot(data = dat, aes(x = dose, y = cells)) + geom_jitter(width = 0.05, height = 0.05) geom_smooth()



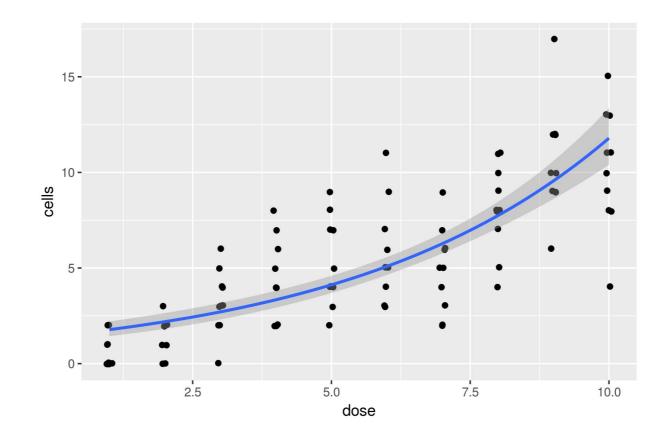
GLMs with geom_smooth()

ggplot(data = dat, aes(x = dose, y = cells)) +
geom_jitter(width = 0.05, height = 0.05)
geom_smooth(method = 'glm')



Poisson GLM with geom_smooth()

ggplot(data = dat, aes(x = dose, y = cells)) + $geom_jitter(width = 0.05, height = 0.05) +$ geom_smooth(method = 'glm', method.args = list(family = 'poisson'))



Summary of steps

- Plot non-overlapping points
- Add in Poisson trend line
- Polish figure (not-done here)

Let's practice! GENERALIZED LINEAR MODELS IN R

Understanding output from logistic regression

GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

Communicating results from logistic regression?

- Linear regression is straight forward: \bullet
 - Add intercepts 0
 - Multiply slopes 0
- Poisson regression:
 - Requires exponential transformation 0
 - Similar to linear regression post-transformation 0
- Logistic regression???

Odds-ratios

- Not as straightforward as Poisson exponential
- Used to compare relative odds of two events occurring

Example odds-ratios

- Unfair coin:
 - Compare heads to tails
 - Heads 3 times for every 1 tails
 - 3-to-1 odds
 - Odds-ratios 3.0
- Often used in sports/gambling
- Medical studies

Logistic derivation of odds-ratio

Log-odds ("logit"):

$$\phi(x)=\ln(rac{p(x)}{1-p(x)})=eta_0+eta_1 x$$

Odds, take exponential (e^x) :

$$rac{p(x)}{1-p(x)}=e^{eta_0+eta_1x}$$

Odd-ratio for continuous variable

Odds-ratio (OR) for continuous variable:

$$\mathrm{OR} = rac{e^{eta_0+eta_1(x+1)}}{e^{eta_0+eta_1x}} = e^{eta_1}$$

Interpretation

OR Values:

- OR = 1: Coefficient has no effect
- OR < 1: Coefficient decreases odds
- OR > 1: Coefficient increases odds

Cancer example

Non-smoking vs smoking males (Pesch et al. 2012)

- OR: 103.5 (95% CI 74.8-143.2)
- > 100-to-1 odds of getting cancer for smoking men!
- Medical literature often reports 95% confidence intervals rather than p-values
- Broader trend away from p-values

Extract from GLM

```
glm_out <- glm(y ~ x, family = 'binomial')</pre>
```

coef(glm_out)

exp(coef(glm_out))

confint(glm_out)

exp(confint(glm_out))

Tidyverse

library(broom)

```
glm_out <- glm(y ~ x, family = 'binomial')</pre>
```

tidy(glm_out, exponentiate = TRUE, conf.int= TRUE)

Let's practice! GENERALIZED LINEAR MODELS IN R

ggplot2 and binomial GLM

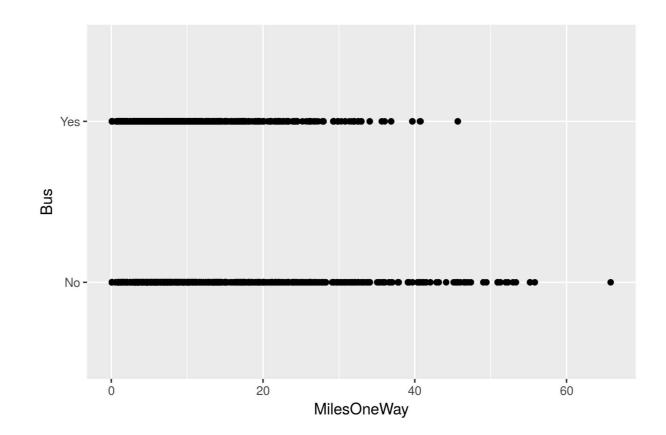
GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

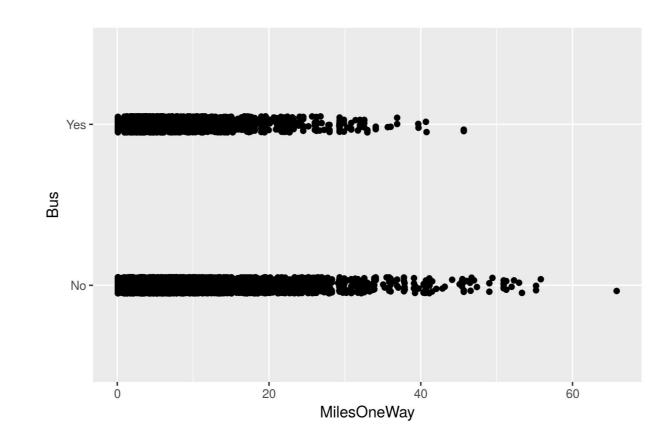
What can I see in my data?

Does commute distance change the probability of taking the bus?

ggplot(bus, aes(x = MilesOneWay, y = Bus)) + geom_point()

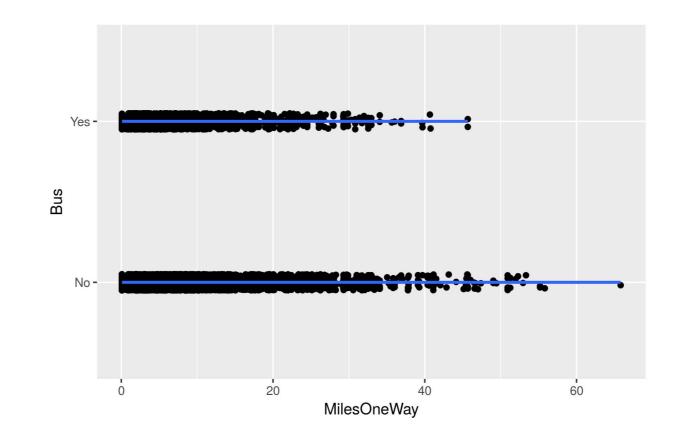


geom_jitter()



geom_smooth()

gg_jitter + geom_smooth()



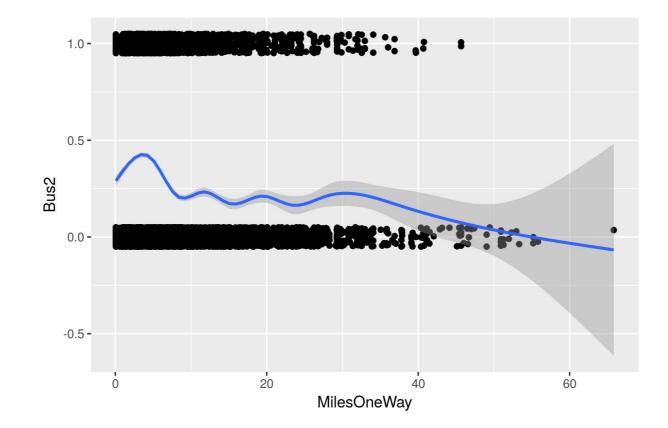
factor to numeric

str(bus)

bus\$Bus2 <- as.numeric(bus\$Bus) - 1</pre>

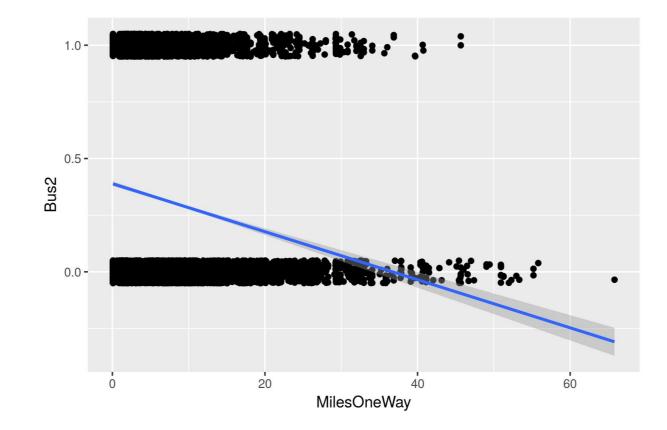
geom_smooth()

gg_jitter + geom_smooth()



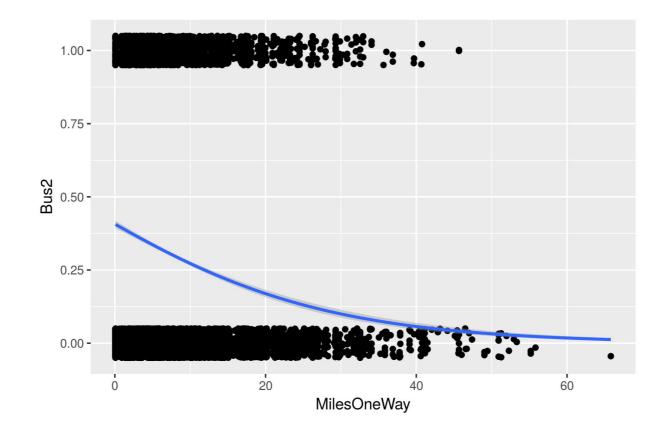
linear models

gg_jitter + geom_smooth(method = 'glm')



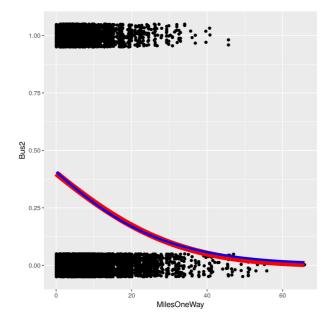
Logistic regressions

ggJitter + geom_smooth(method = 'glm', method.args = list(family = "binomial"))



gg_jitter +

```
geom_smooth(method = 'glm',
            method.args = list(family = binomial(link = 'logit')),
            se = FALSE, color = 'red') +
geom_smooth(method = 'glm',
            method.args = list(family = binomial(link = 'probit')),
            se = FALSE, color = 'blue')
```



Summary of steps

- Plot as jitter to avoid overlap
- Add a smoothed geom
- Specify correct method and family
- Polish your figure (not covered in this course) \bullet

Let's practice! GENERALIZED LINEAR MODELS IN R

