Multiple logistic regression

GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

Chapter overview

- Multiple logistic regression
- Formulas in R
- Model assumptions

Why multiple regression?

Problem: Multiple predictor variables. Which one should I include?

Solution: Include all of them using multiple regression.

Multiple predictor variables

- Simple linear models or simple GLM:
 - Limited to 1 Slope and 1 intercept 0
 - $\circ \ y \sim eta_0 + eta_1 x + \epsilon$
- Multiple regression
 - Multiple slopes and intercepts: 0

$$\circ y \sim eta_0 + eta_1 x_1 + eta_2 x + eta_3 x_3 \ldots + \epsilon$$

Too much of a good thing

Theoretical maximum number of coefficients:

Maximum number of β s = Number of observations

Over-fitting:

Using too many predictors compared to number of samples

Practical maximum number of coefficients:

Number of eta imes 10 pprox Number of observations

Bus data: Two possible predictors

- With bus commuter data, 2 possible predictors
 - Number of days one commutes: CommuteDay 0
 - Distance of commute: MilesOneWay 0
- Possible to build a model with both

glm(Bus ~ CommuteDay + MilesOneWay, data = bus, family = 'binomial')

Summary of GLM with multiple predictors

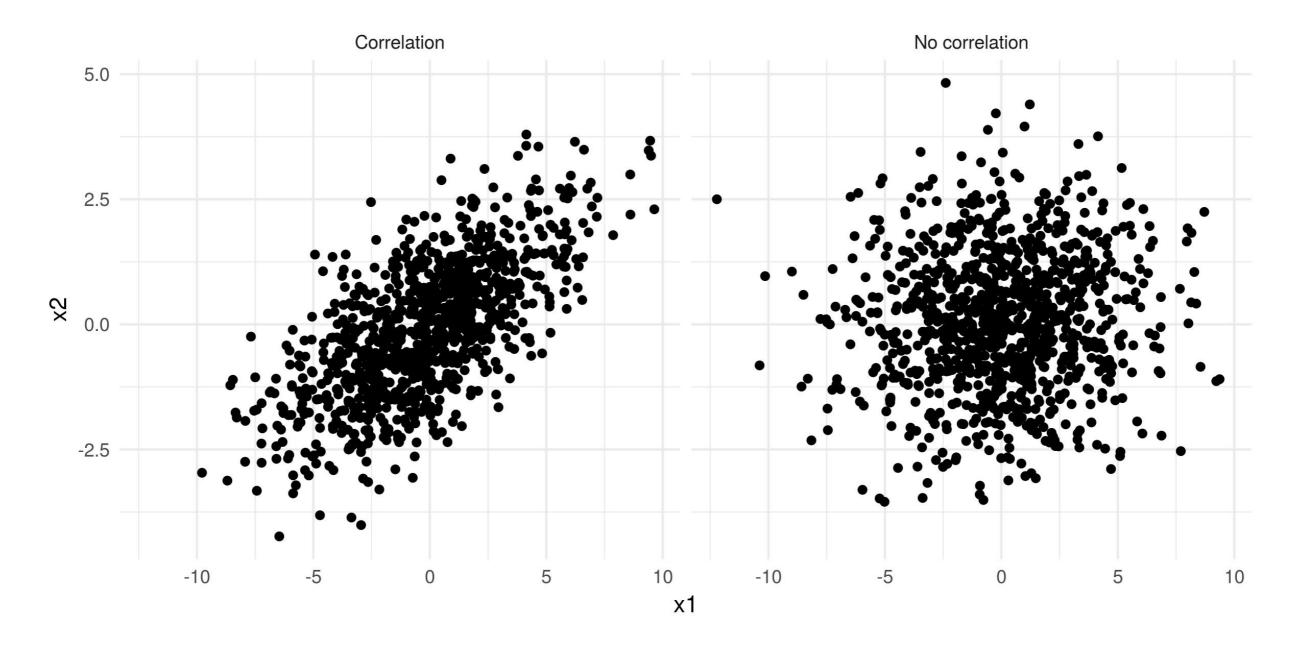
```
Call:
glm(formula = Bus ~ CommuteDays + MilesOneWay, family = "binomial",
   data = bus)
```

```
Deviance Residuals:
   Min 1Q Median 3Q
                               Max
-1.0732 -0.9035 -0.7816 1.3968 2.5066
```

```
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.707515 0.119719 -5.910 3.42e-09 ***
CommuteDays 0.066084 0.023181 2.851 0.00436 **
MilesOneWay -0.059571 0.003218 -18.512 < 2e-16 ***
#...
```


Correlation between predictors

datacamp



Order of coefficients

No correlation between predictors

- Order not important
- $\bullet \hspace{0.2cm} y \sim x_1 + x_2 + \epsilon \approx y \sim x_2 + x_1 + \epsilon$

Correlation between predictors

- Order may changes estimates
- $\bullet \hspace{0.2cm} y \sim x_1 + x_2 + \epsilon \neq y \sim x_2 + x_1 + \epsilon$

Let's practice! GENERALIZED LINEAR MODELS IN R

Formulas in R

GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

Why care about formulas for multiple logistic regression?

- Formulas backbone of regression
- ٠ Tricky to figure out
- Understanding model.matrix() key \bullet

Slopes

Estimates coefficient for continuous variable

• e.g., height = c(72.3, 21.1, 3.7, 1.0)

- Formula also requires a global intercept
- Multiple slopes: Slope for each predictor \bullet

Intercepts

- Discrete groups used to predict \bullet
- factor or character in R: fish = c("red", "blue")
- Single intercept has two options:
 - Reference intercept + contrast: y ~ x 0
 - Intercept for each group: $y \sim x 1$ 0

Multiple intercepts

- Estimates effect of each group compared to reference group \bullet
- The first group, alphabetically, in the factor
- Default has one reference group per variable

• y ~ x1 + x2

• Can specify one group to estimate an intercept for all groups

∘ y ~ x1+ x2 - 1

• First variable has intercept estimated for each group

Dummy variables

- Codes group membership
- Used under the hood (i.e., model.matrix())
- Os and 1s for each group
- Example input: color = c("red", "blue")
- Dummy variables for y ~ colors :
 - intercept = c(1, 1)0
 - blue = c(0, 1)0
- Dummy variables for $y \sim colors 1$:
 - \circ red = c(1, 0)
 - blue = c(0, 1)0

model.matrix()

- model.matrix() does legwork for us
- Foundation for formulas in R

model.matrix(~ colors)

	(Intercept)	colorsred
1	1	1
2	1	0

attr(,"assign")

[1] 0 1

attr(,"contrasts") attr(,"contrasts")\$colors

"contr.treatment"

- Order determined by factor order
- Change order change with Tidyverse or factor()

Factor vs numeric caveat

- R thinks variable is numeric
 - e.g., month = c(1, 2, 3)

month <- c(1, 2, 3)model.matrix(~ month)

	(Intercept)	mo	onth
1	1		1
2	1		2
3	1		3

attr(,"assign")

• Need to specify factor or character o e.g., month = factor(c(1, 2, 3))

model.matrix(~ month)

	(Intercept)	month2	month3
1	1	0	0
2	1	1	0
3	1	0	1

attr(,"assign")

011

attr(,"contrasts")\$month

"contr.treatment"

tacamp

Let's practice! GENERALIZED LINEAR MODELS IN R

Assumptions of multiple logistic regression

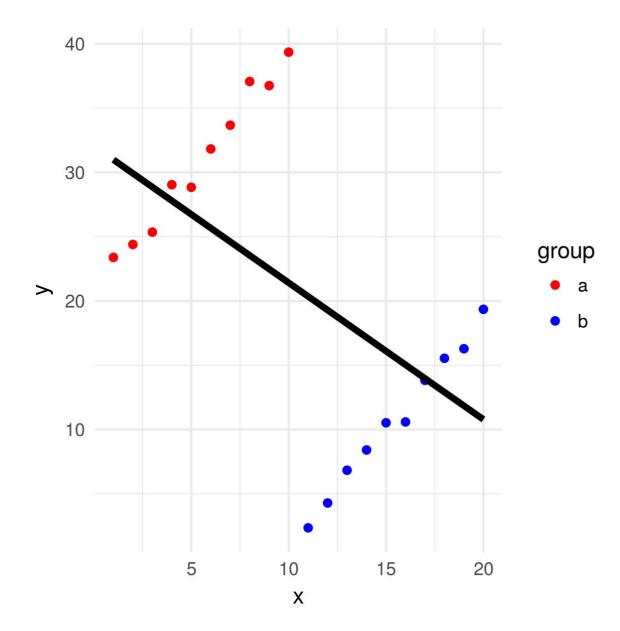
GENERALIZED LINEAR MODELS IN R

Richard Erickson Instructor

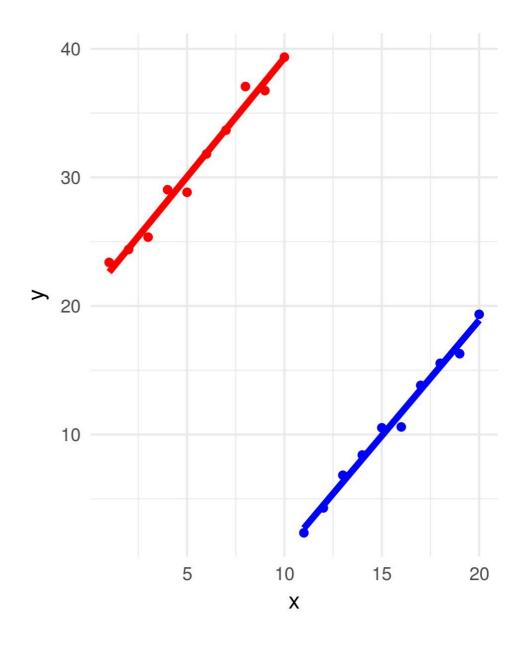
Assumptions

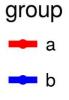
- Limitations also apply to Poisson and other GLMs
- Important assumptions:
 - Simpson's paradox
 - Linear, monotonic
 - Independence
 - Overdispersion

Example Simpson's paradox



datacamp





Simpson's paradox

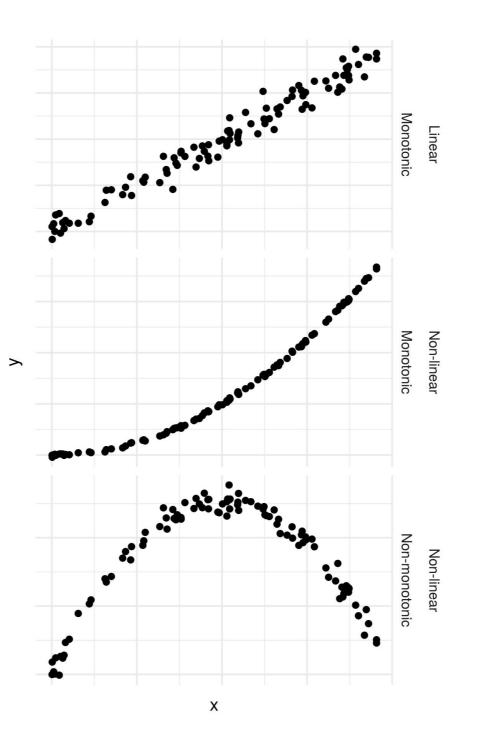
Key points

- Missing important predictor \bullet
- Inclusion changes outcome \bullet
- Easy to visualize with lm()

Simpson's paradox and admission data

Admissions data

- University of California Berkeley
- Graduate admission
- Rate of admission by department and gender
- Does bias exist?



Independence

Predictors

- If all independent, order has no effect on estimates
- If non-independent, order can change estimates

Response

- What is unit of focus?
- Individual, groups, group of groups?
- Test scores
 - Individual student? 0
 - Teacher? School? District? 0

Overdispersion

- Too many zeros or one (Binomial)
- Too many zeros, too large variance (Poisson)
- Variance changes \bullet
- Beyond scope of this course

Let's practice! GENERALIZED LINEAR MODELS IN R

Conclusion

GENERALIZED LINEAR MODELS IN R

Richard Erickson

What you've learned

- How GLM extends LM:
 - Poisson Error term
 - **Binomial Error term** 0
- Understanding and plotting results
- GLM with multiple regression

Where to from here?

- DataCamp Multiple (linear) regression course in R (if you missed it) ${\color{black}\bullet}$
- Extending to include random effects with **Hierarchical and mixed-effect models in R**
- Fit **generalized additive models in R** (GAMs) to non-linear models
- Decide what coefficients to use with model selection such as AIC ${}^{\bullet}$
- Many other types of regression
- Searching and R packages documentation to learn more \bullet

Happy coding! Generalized linear models in R

