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Introduction to Generalized Linear Models

Introduction

This short course provides an overview of generalized linear models
(GLMs).

We shall see that these models extend the linear modelling
framework to variables that are not Normally distributed.

GLMs are most commonly used to model binary or count data, so
we will focus on models for these types of data.
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The General Linear Model

In a general linear model

yi = β0 + β1x1i + ...+ βpxpi + εi

the response yi, i = 1, . . . , n is modelled by a linear function of
explanatory variables xj , j = 1, . . . , p plus an error term.
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General and Linear
Here general refers to the dependence on potentially more than
one explanatory variable, v.s. the simple linear model:

yi = β0 + β1xi + εi

The model is linear in the parameters, e.g.

yi = β0 + β1x1 + β2x
2
1 + εi

yi = β0 + γ1δ1x1 + exp(β2)x2 + εi

but not e.g.

yi = β0 + β1x
β2
1 + εi

yi = β0 exp(β1x1) + εi
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Error structure

We assume that the errors εi are independent and identically
distributed such that

E[εi] = 0

and var[εi] = σ2

Typically we assume
εi ∼ N(0, σ2)

as a basis for inference, e.g. t-tests on parameters.
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Some Examples
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Restrictions

Restrictions of Linear Models

Although a very useful framework, there are some situations where
general linear models are not appropriate

I the range of Y is restricted (e.g. binary, count)

I the variance of Y depends on the mean

Generalized linear models extend the general linear model
framework to address both of these issues
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Generalized Linear Models (GLMs)
A generalized linear model is made up of a linear predictor

ηi = β0 + β1x1i + ...+ βpxpi

and two functions

I a link function that describes how the mean, E(Yi) = µi,
depends on the linear predictor

g(µi) = ηi

I a variance function that describes how the variance, var(Yi)
depends on the mean

var(Yi) = φV (µ)

where the dispersion parameter φ is a constant
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Normal General Linear Model as a Special Case

For the general linear model with ε ∼ N(0, σ2) we have the linear
predictor

ηi = β0 + β1x1i + ...+ βpxpi

the link function
g(µi) = µi

and the variance function

V (µi) = 1
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Modelling Binomial Data

Suppose
Yi ∼ Binomial(ni, pi)

and we wish to model the proportions Yi/ni. Then

E(Yi/ni) = pi var(Yi/ni) =
1
ni
pi(1− pi)

So our variance function is

V (µi) = µi(1− µi)

Our link function must map from (0, 1)→ (−∞,∞). A common
choice is

g(µi) = logit(µi) = log
(

µi
1− µi

)
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Modelling Poisson Data

Suppose
Yi ∼ Poisson(λi)

Then

E(Yi) = λi var(Yi) = λi

So our variance function is

V (µi) = µi

Our link function must map from (0,∞)→ (−∞,∞). A natural
choice is

g(µi) = log(µi)
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Transformation vs. GLM

In some situations a response variable can be transformed to
improve linearity and homogeneity of variance so that a general
linear model can be applied.

This approach has some drawbacks

I response variable has changed!

I transformation must simulateneously improve linearity and
homogeneity of variance

I transformation may not be defined on the boundaries of the
sample space
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For example, a common remedy for the variance increasing with
the mean is to apply the log transform, e.g.

log(yi) = β0 + β1x1 + εi

⇒ E(log Yi) = β0 + β1x1

This is a linear model for the mean of log Y which may not always
be appropriate. E.g. if Y is income perhaps we are really interested
in the mean income of population subgroups, in which case it
would be better to model E(Y ) using a glm :

logE(Yi) = β0 + β1x1

with V (µ) = µ. This also avoids difficulties with y = 0.
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Exponential Family

Most of the commonly used statistical distributions, e.g. Normal,
Binomial and Poisson, are members of the exponential family of
distributions whose densities can be written in the form

f(y; θ, φ) = exp
{
yθ − b(θ)
φ+ c(y, φ)

}
where φ is the dispersion parameter and θ is the canonical
parameter.

It can be shown that

E(Y ) = b′(θ) = µ

and var(Y ) = φb′′(θ) = φV (µ)
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Canonical Links

For a glm where the response follows an exponential distribution
we have

g(µi) = g(b′(θi)) = β0 + β1x1i + ...+ βpxpi

The canonical link is defined as

g = (b′)−1

⇒ g(µi) = θi = β0 + β1x1i + ...+ βpxpi

Canonical links lead to desirable statistical properties of the glm
hence tend to be used by default. However there is no a priori
reason why the systematic effects in the model should be additive
on the scale given by this link.
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Estimation of the Model Parameters

A single algorithm can be used to estimate the parameters of an
exponential family glm using maximum likelihood.

The log-likelihood for the sample y1, . . . , yn is

l =
n∑
i=1

yiθi − b(θi)
φi

+ c(yi, φi)

The maximum likelihood estimates are obtained by solving the
score equations

s(βj) =
∂l

∂βj
=

n∑
i=1

yi − µi
φiV (µi)

× xij
g′(µi)

= 0

for parameters βj .
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We assume that

φi =
φ

ai

where φ is a single dispersion parameter and ai are known prior
weights; for example binomial proportions with known index ni
have φ = 1 and ai = ni.

The estimating equations are then

∂l

∂βj
=

n∑
i=1

ai(yi − µi)
V (µi)

× xij
g′(µi)

= 0

which does not depend on φ (which may be unknown).
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A general method of solving score equations is the iterative
algorithm Fisher’s Method of Scoring (derived from a Taylor’s
expansion of s(β))

In the r-th iteration , the new estimate β(r+1) is obtained from the
previous estimate β(r) by

β(r+1) = β(r) + s
(
β(r)

)
E
(
H
(
β(r)

))−1

where H is the Hessian matrix: the matrix of second derivatives
of the log-likelihood.
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It turns out that the updates can be written as

β(r+1) =
(
XTW (r)X

)−1
XTW (r)z(r)

i.e. the score equations for a weighted least squares regression of
z(r) on X with weights W (r) = diag(wi), where

z
(r)
i = η

(r)
i +

(
yi − µ(r)

i

)
g′
(
µ

(r)
i

)
and w

(r)
i =

ai

V
(
µ

(r)
i

)(
g′
(
µ

(t)
i

))2
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Hence the estimates can be found using an Iteratively
(Re-)Weighted Least Squares algorithm:

1. Start with initial estimates µ
(r)
i

2. Calculate working responses z
(r)
i and working weights w

(r)
i

3. Calculate β(r+1) by weighted least squares

4. Repeat 2 and 3 till convergence

For models with the canonical link, this is simply the
Newton-Raphson method.
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Standard Errors

The estimates β̂ have the usual properties of maximum likelihood
estimators. In particular, β̂ is asymptotically

N(β, i−1)

where
i(β) = φ−1XTWX

Standard errors for the βj may therefore be calculated as the
square roots of the diagonal elements of

ˆcov(β̂) = φ(XT ŴX)−1

in which (XT ŴX)−1 is a by-product of the final IWLS iteration.

If φ is unknown, an estimate is required.
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There are practical difficulties in estimating the dispersion φ by
maximum likelihood.

Therefore it is usually estimated by method of moments. If β
was known an unbiased estimate of φ = {ai var(Y )}/v(µi) would
be

1
n

n∑
i=1

ai(yi − µi)2

V (µi)

Allowing for the fact that β must be estimated we obtain

1
n− p

n∑
i=1

ai(yi − µi)2

V (µi)
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glm Function

The glm Function

Generalized linear models can be fitted in R using the glm function,
which is similar to the lm function for fitting linear models.

The arguments to a glm call are as follows

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = glm.control(...), model = TRUE,
method = ”glm.fit”, x = FALSE, y = TRUE,
contrasts = NULL, ...)
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glm Function

Formula Argument

The formula is specified to glm as, e.g.

y ∼ x1 + x2

where x1, x2 are the names of

I numeric vectors (continuous variables)

I factors (categorical variables)

All specified variables must be in the workspace or in the data
frame passed to the data argument.
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glm Function

Other symbols that can be used in the formula include

I a:b for an interaction between a and b

I a*b which expands to a + b + a:b

I . for first order terms of all variables in data

I - to exclude a term or terms

I 1 to include an intercept (included by default)

I 0 to exclude an intercept



Introduction

GLMs in R

glm Function

Family Argument

The family argument takes (the name of) a family function which
specifies

I the link function

I the variance function

I various related objects used by glm, e.g. linkinv

The exponential family functions available in R are

I binomial(link = "logit")

I gaussian(link = "identity")

I Gamma(link = "inverse")

I inverse.gaussian(link = "1/mu2")

I poisson(link = "log")
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glm Function

Extractor Functions

The glm function returns an object of class c("glm", "lm").

There are several glm or lm methods available for
accessing/displaying components of the glm object, including:

I residuals()

I fitted()

I predict()

I coef()

I deviance()

I formula()

I summary()
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Example: Household Food Expenditure

Griffiths, Hill and Judge (1993) present a dataset on food
expenditure for households that have three family members. We
consider two variables, the logarithm of expenditure on food and
the household income:

dat <- read.table("GHJ_food_income.txt", header = TRUE)
attach(dat)
plot(Food ~ Income, xlab = "Weekly Household Income ($)",

ylab = "Weekly Household Expenditure on Food (Log $)")

It would seem that a simple linear model would fit the data well.
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Example with Normal Data

We will first fit the model using lm, then compare to the results
using glm.

foodLM <- lm(Food ∼ Income)
summary(foodLM)
foodGLM <- glm(Food ∼ Income)
summary(foodGLM)
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Summary of Fit Using lm

Call:

lm(formula = Food ∼ Income)

Residuals:

Min 1Q Median 3Q Max

-0.508368 -0.157815 -0.005357 0.187894 0.491421

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.409418 0.161976 14.875 < 2e-16 ***

Income 0.009976 0.002234 4.465 6.95e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2766 on 38 degrees of freedom

Multiple R-squared: 0.3441,Adjusted R-squared: 0.3268

F-statistic: 19.94 on 1 and 38 DF, p-value: 6.951e-05
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Summary of Fit Using glm

The default family for glm is "gaussian" so the arguments of the
call are unchanged.

A five-number summary of the deviance residuals is given. Since
the response is assumed to be normally distributed these are the
same as the residuals returned from lm.

Call:
glm(formula = Food ~ Income)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.508368 -0.157815 -0.005357 0.187894 0.491421
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The estimated coefficients are unchanged

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.409418 0.161976 14.875 < 2e-16 ***
Income 0.009976 0.002234 4.465 6.95e-05 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for gaussian family taken to be 0.07650739

Partial t-tests test the significance of each coefficient in the
presence of the others. The dispersion parameter for the gaussian
family is equal to the residual variance.
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Wald Tests

For non-Normal data, we can use the fact that asymptotically

β̂ ∼ N(β, φ(X ′WX)−1)

and use a z-test to test the significance of a coefficient.

Specifically, we test

H0 : βj = 0 versus H1 : βj 6= 0

using the test statistic

zj =
β̂j√

φ(X ′ŴX)−1
jj

which is asymptotically N(0, 1) under H0.
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Different model summaries are reported for GLMs. First we have
the deviance of two models:

Null deviance: 4.4325 on 39 degrees of freedom
Residual deviance: 2.9073 on 38 degrees of freedom

The first refers to the null model in which all of the terms are
excluded, except the intercept if present. The degrees of freedom
for this model are the number of data points n minus 1 if an
intercept is fitted.

The second two refer to the fitted model, which has n− p degees
of freedom, where p is the number of parameters, including any
intercept.
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Deviance

The deviance of a model is defined as

D = 2φ(lsat − lmod)

where lmod is the log-likelihood of the fitted model and lsat is the
log-likelihood of the saturated model.

In the saturated model, the number of parameters is equal to the
number of observations, so ŷ = y.

For linear regression with Normal data, the deviance is equal to the
residual sum of squares.
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Akiake Information Criterion (AIC)

Finally we have:

AIC: 14.649

Number of Fisher Scoring iterations: 2

The AIC is a measure of fit that penalizes for the number of
parameters p

AIC = −2lmod + 2p

Smaller values indicate better fit and thus the AIC can be used to
compare models (not necessarily nested).
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Residual Analysis

Several kinds of residuals can be defined for GLMs:

I response: yi − µ̂i
I working: from the working response in the IWLS algorithm

I Pearson

rPi =
yi − µ̂i√
V (µ̂i)

s.t.
∑

i(r
P
i )2 equals the generalized Pearson statistic

I deviance rDi s.t.
∑

i(r
D
i )2 equals the deviance

These definitions are all equivalent for Normal models.
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Deviance residuals are the default used in R, since they reflect the
same criterion as used in the fitting.

For example we can plot the deviance residuals against the fitted
values ( on the response scale) as follows:

plot(residuals(foodGLM) ~ fitted(foodGLM),
xlab = expression(hat(y)[i]),
ylab = expression(r[i]))

abline(0, 0, lty = 2)
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The plot function gives the usual choice of residual plots, based
on the deviance residuals. By default

I deviance residuals v. fitted values

I Normal Q-Q plot of deviance residuals standardised to unit
variance

I scale-location plot of standardised deviance residuals

I standardised deviance residuals v. leverage with Cook’s
distance contours
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Example with Normal Data

Residual Plots

For the food expenditure data the residuals do not indicate any
problems with the modelling assumptions:

plot(foodGLM)
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Exercises

1. Load the SLID data from the car package and attach the data
frame to the search path. Look up the description of the SLID
data in the help file.

In the following exercises you will investigate models for the wages
variable.

2. Produce appropriate plots to examine the bivariate relationships
of wages with the other variables in the data set. Which variables
appear to be correlated with wages?

3. Use lm to regress wages on the linear effect of the other
variables. Look at a summary of the fit. Do the results appear to
agree with your exploratory analysis? Use plot to check the
residuals from the fit. Which modelling assumptions appear to be
invalid?
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4. Repeat the analysis of question 3 with log(wages) as the
response variable. Confirm that the residuals are more consistent
with the modelling assumptions. Can any variables be dropped
from the model?

Investigate whether two-way and three-way interactions should be
added to the model.
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In the analysis of question 4, we have estimated a model of the
form

log yi = β0 +
p∑
r=1

βrxir + εi (1)

which is equivalent to

yi = exp

(
β∗0 +

p∑
r=1

βrxir

)
× ε∗i (2)

where εi = log(ε∗i )− E(log ε∗i ).
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Assuming εi to be normally distributed in Equation 1 implies that
log(Y ) is normally distributed. If X = log(Y ) ∼ N(µ, σ2), then Y
has a log-Normal distribution with parameters µ and σ2. It can be
shown that

E(Y ) = exp
(
µ+

1
2
σ2

)
var(Y ) =

{
exp(σ2)− 1

}
{E(Y )}2

so that
var(Y ) ∝ {E(Y )}2

An alternative approach is to assume that Y has a Gamma
distribution, which is the exponential family with this
mean-variance relationship. We can then model E(Y ) using a
GLM. The canonical link for Gamma data is 1/µ, but Equation 2
suggests we should use a log link here.
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5. Use gnm to fit a Gamma model for wages with the same
predictor variables as your chosen model in question 4. Look at a
summary of the fit and compare with the log-Normal model – Are
the inferences the same? Are the parameter estimates similar?
Note that t statistics rather than z statistics are given for the
parameters since the dispersion φ has had to be estimated.

6. (Extra time!) Go back and fit your chosen model in question 4
using glm. How does the deviance compare to the equivalent
Gamma model? Note that the AIC values are not comparable here:
constants in the likelihood functions are dropped when computing
the AIC, so these values are only comparable when fitting models
with the same error distribution.


