Introduction to **Generalized Additive** Models

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Trade-offs in model building

Non-linear relationships

datacamp

Nonlinear relationships

tacamp

linear_mod <- lm(y ~ x, data = my_data)</pre>

Nonlinear relationships

library(mgcv)

tacamp

gam_mod <- gam(y ~ s(x), data = my_data)</pre>

Basis functions

R datacamp

Basis functions

 $gam_mod <- gam(y ~ s(x), data = my_data)$

coef(gam_mod)

(Intercept) 7.814448	s(x2).1 5.272290	s(x2).2 5.104941	
s(x2).3 1.271135	s(x2).4 1.720561	s(x2).5 -1.180613	
s(x2).6 -2.676133			

R datacamp

Let's practice!

Basis Functions and Smoothing

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Getting the right fit

tacamp

- Close to the data (avoiding under-fitting)
- Not fitting the noise ullet(avoiding over-fitting)

Balancing Wiggliness Fit = Likelihood – $\lambda \times$ Wigglines

Choosing the right smoothing parameter

datacamp

Smoothing syntax

Setting a fixed smoothing parameter

 $gam(y \sim s(x), data = dat, sp = 0.1)$ $gam(y \sim s(x, sp = 0.1), data = dat)$

Smoothing via restricted maximum likelihood

 $gam(y \sim s(x), data = dat, method = "REML")$

Number of basis functions

Basis function syntax

Setting number of basis functions

```
gam(y \sim s(x, k = 3), data = dat, method = "REML")
```

 $gam(y \sim s(x, k = 10), data = dat, method = "REML")$

Use the defaults

 $gam(y \sim s(x), data = dat, method = "REML")$

Let's practice!

Multivariate GAMs

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Our working dataset: mpg

mpg

datacamp

	symbol	loss	make	fuel	aspir	doors	•••	eng.loc	wb	length	width
1	3	NA	alfa-romero	gas	std	two	• • •	front	88.6	168.8	64.1
2	3	NA	alfa-romero	gas	std	two	• • •	front	88.6	168.8	64.1
3	1	NA	alfa-romero	gas	std	two	• • •	front	94.5	171.2	65.5
4	2	164	audi	gas	std	four	• • •	front	99.8	176.6	66.2
5	2	164	audi	gas	std	four	• • •	front	99.4	176.6	66.4
6	2	NA	audi	gas	std	two	• • •	front	99.8	177.3	66.3
7	1	158	audi	gas	std	four	• • •	front	105.8	192.7	71.4
8	1	NA	audi	gas	std	four	• • •	front	105.8	192.7	71.4
9	1	158	audi	gas	turbo	four	• • •	front	105.8	192.7	71.4
10	0	NA	audi	gas	turbo	two	• • •	front	99.5	178.2	67.9
• •	•										

Multiple smooths (1)

atacamp

model <- gam(hw.mpg ~ s(weight), data = mpg,</pre> method = "REML")

Multiple smooths (2)

model <- gam(hw.mpg ~ s(weight), data = mpg,</pre> method = "REML")

model2 <- gam(hw.mpg ~ s(weight) + s(length), data = mpg,</pre> method = "REML")

Multiple smooths (3)

atacamp

model2 <- gam(hw.mpg ~ s(weight) + s(length), data = mpg,</pre> method = "REML")

Linear terms

atacamp

model2 <- gam(hw.mpg ~ s(weight) + length, data = mpg,</pre> method = "REML")

Linear terms (2)

tacamp

model2b <- gam(hw.mpg ~ s(weight) + s(length, sp = 1000),</pre> data = mpg, method = "REML")

Categorical terms (1)

fuel

R datacamp

Categorical terms (2)

tacamp

model4 <- gam(hw.mpg ~ s(weight, by = fuel), data = mpg,</pre> method = "REML")

Categorical terms (3)

acamp

model4b <- gam(hw.mpg ~ s(weight, by = fuel) + fuel,</pre> data = mpg, method = "REML")

Let's practice!

