Interpreting GAM outputs

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

GAM summaries

summary(mod_hwy)

Family: gaussian Link function: identity

```
Formula:
hw.mpg ~ s(weight) +
```

```
hw.mpg ~ s(weight) + s(rpm) + s(price) + s(comp.ratio) +
    s(width) + fuel
```

```
Parametric coefficients:
```

datacamp

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	23.873		3.531		6.760	1.89e-10	***
fuelgas	7.571		3.922		1.931	0.0551	•

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Approximate significance of smooth terms:
              edf Ref.df
                             F p-value
s(weight)
         6.254 7.439 20.909 < 2e-16 ***
s(rpm)
            7.499 8.285 8.534 2.07e-09 ***
s(price)
            2.681 3.421 1.678 0.155
s(comp.ratio) 1.000 1.001 18.923 2.22e-05 ***
s(width)
            1.001 1.001 0.357
                                  0.551
 ____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.89 Deviance explained = 90.1%
REML = 464.81 Scale est. = 5.171
                                   n = 199
```

GAM summaries (3)

summary(mod_hwy)

Family: gaussian Link function: identity

```
Formula:
hw.mpg ~ s(weight) + s(rpm) + s(price) +
s(comp.ratio) + s(width) + fuel
```

R datacamp

• •

GAM summaries (4)

summary(mod_hwy)

•••						
Parametric d	coefficients:					
	Estimate Std.	Error t	value	Pr(> t)		
(Intercept)	23.873	3.531	6.760	1.89e-10	***	
fuelgas	7.571	3.922	1.931	0.0551	•	
Signif. code	es: 0 '***' 0	.001 '**'	0.01	'*' 0.05	'.' (9.1 '
• • •						

GAM summaries (5)

summary(mod_hwy)

datacamp

• • •					
Approximate s:	ignifi	cance of	f smooth	n terms:	
	edf	Ref.df	F	p-value	
s(weight)	6.254	7.439	20.909	< 2e-16	***
s(rpm)	7.499	8.285	8.534	2.07e-09	***
s(price)	2.681	3.421	1.678	0.155	
s(comp.ratio)	1.000	1.001	18.923	2.22e-05	***
s(width)	1.001	1.001	0.357	0.551	
Signif. codes	: 0 '>	***' 0.(001 '**'	' 0.01 '*'	' 0.05 '.' 0.1 ' ' 1
•••					

Effective degrees of freedom

Approximate s	ignific	cance of	⁼ smooth	n terms:		
	edf	Ref.df	F	p-value		
s(weight)	6.254	7.439	20.909	< 2e-16	***	<
s(rpm)	7.499	8.285	8.534	2.07e-09	***	
s(price)	2.681	3.421	1.678	0.155		
s(comp.ratio)	1.000	1.001	18.923	2.22e-05	***	<
s(width)	1.001	1.001	0.357	0.551		

datacamp

Significance of smooth terms

Approximate s	ignific	ance of	f smootl	n terms:	
	edf	Ref.df	F	p-value	
s(weight)	6.254	7.439	20.909	< 2e-16	***
s(rpm)	7.499	8.285	8.534	2.07e-09	***
s(price)	2.681	3.421	1.678	0.155	
s(comp.ratio)	1.000	1.001	18.923	2.22e-05	***
s(width)	1.001	1.001	0.357	0.551	
Signif. codes	: 0 '*	**' 0.0	01 '**	' 0.01 '*'	' 0.05 '.' 0.1 ' ' 1

Significance of smooth terms (2)

Approximate s:	ignific	cance of	f smooth	n terms:		
	edf	Ref.df	F	p-value		
s(weight)	6.254	7.439	20.909	< 2e-16	***	<
s(rpm)	7.499	8.285	8.534	2.07e-09	***	
s(price)	2.681	3.421	1.678	0.155		<
s(comp.ratio)	1.000	1.001	18.923	2.22e-05	***	
s(width)	1.001	1.001	0.357	0.551		

datacamp

Significance and effective degrees of freedom

Approximate s:	ignifi	cance of	f smooth	n terms:			
	edf	Ref.df	F	p-value			
s(weight)	6.254	7.439	20.909	< 2e-16	***		
s(rpm)	7.499	8.285	8.534	2.07e-09	***		
s(price)	2.681	3.421	1.678	0.155		<	
s(comp.ratio)	1.000	1.001	18.923	2.22e-05	***	<	
s(width)	1.001	1.001	0.357	0.551		<	

latacamp

Let's practice!

The plot command

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

The plot command

plot(gam_model)

?plot.gam

Partial Effect Plots

R datacamp

Selecting partial effects

```
plot(gam_model, select = c(2, 3))
plot(gam_model, pages = 1)
plot(gam_model, pages = 1, all.terms = TRUE)
```


comp.ratio

tacamp

Showing data on the plots

plot(gam_model, rug = TRUE)

datacamp

Showing data on the plots (2)

plot(gam_model, residuals = TRUE)

latacamp

Showing data on the plots (3)

plot(gam_model, rug = TRUE, residuals = TRUE,

pch = 1, cex = 1)

2 datacamp

Showing standard errors

plot(gam_model, se = TRUE)

datacamp

Showing standard errors (2)

plot(gam_model, shade = TRUE)

latacamp

Showing standard errors

latacamp

plot(gam_model, shade = TRUE, shade.col = "lightblue")

Transforming standard errors

plot(gam_model, seWithMean = TRUE)

latacamp

Transforming standard errors (2)

plot(gam_model, seWithMean = TRUE, shift = coef(gam_model)[1])

tacamp

Now lets make some plots!

Model checking with gam.check()

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

R datacamp

Pitfall one: inadequate basis number

tacamp

```
Method: REML
              Optimizer: outer newton
full convergence after 9 iterations.
Gradient range [-0.0001467222,0.00171085]
(score 784.6012 & scale 2.868607).
Hessian positive definite, eigenvalue range [0.00014,198.5]
Model rank = 7/7
Basis dimension (k) checking results. Low p-value
(k-index<1) may indicate that k is too low, especially
if edf is close to k'.
       k' edf k-index p-value
s(x1) 3.00 1.00 0.35 <2e-16 ***
s(x2) 3.00 2.88 1.00
                          0.52
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

Running gam.check (2)

R datacamp

Running gam.check (3)

Resids vs. linear pred.

datacamp

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

datacamp

Let's check some models

Checking concurvity NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

R datacamp

Concurvity

datacamp

The concurvity() function

atacamp

concurvity(m1, full = TRUE)

	para	s(X1)	s(X2)
worst	0	0.84	0.84
observed	0	0.22	0.57
estimate	0	0.28	0.60

Pairwise concurvities

concurvity(model, full = FALSE)

latacamp

\$wors	t _							
	para	s(X1)	s(X2)					
para	1	0.00	0.00					
s(X1)	0	1.00	0.84					
s(X2)	0	0.84	1.00					
\$obseı	rved			\$estir	nate			
	para	s(X1)	s(X2)		para	s(X1)	s(X2)	
para	1	0.00	0.00	para	1	0.00	0.0	
s(X1)	0	1.00	0.57	s(X1)	0	1.00	0.6	
s(X2)	0	0.22	1.00	s(X2)	0	0.28	1.0	

Let's practice!

