Two-dimensional smooths and spatial data

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

Interactions in GAMs

 $y = s(x_1, x_2)$

Syntax for interactions

Mixing interaction and single terms

```
gam(y ~ s(x1, x2) + s(x3),
        data = dat, method = "REML")
```

```
gam(y \sim s(x1, x2) + x3 + x4,
        data = dat, method = "REML")
```



```
Family: gaussian
Link function: identity
Formula:
y ~ s(x1, x2)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.34256 0.01646 20.82 <2e-16 ***
 ____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(x1,x2) 10.82 14.9 14.37 <2e-16 *** #<-- Interaction
 ____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.519 Deviance explained = 54.5%
GCV = 0.057564 Scale est. = 0.054161 n = 200
```

atacamp

Spatial data

meuse

	x	У	cadmium	copper	lead	zinc	elev	dist	om	ffreq
1	181072	333611	11.7	85	299	1022	7.909	0.00135803	13.6	1
2	181025	333558	8.6	81	277	1141	6.983	0.01222430	14.0	1
3	181165	333537	6.5	68	199	640	7.800	0.10302900	13.0	1
4	181298	333484	2.6	81	116	257	7.655	0.19009400	8.0	1
5	181307	333330	2.8	48	117	269	7.480	0.27709000	8.7	1
6	181390	333260	3.0	61	137	281	7.791	0.36406700	7.8	1
7	181165	333370	3.2	31	132	346	8.217	0.19009400	9.2	1
8	181027	333363	2.8	29	150	406	8.490	0.09215160	9.5	1
9	181060	333231	2.4	37	133	347	8.668	0.18461400	10.6	1
10	181232	333168	1.6	24	80	183	9.049	0.30970200	6.3	1

?sp::meuse

datacamp

R

Let's practice!

Plotting GAM interactions

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Using mgcv's plot() command with interactions.

plot(mod_2d)

tacamp

Using mgcv's plot() with interactions

plot(mod_2d, scheme = 1)

Using mgcv's plot() with interactions

plot(mod_2d, scheme = 2)

itacamp

s(x1,x2,8.57)

x1

Customizing interaction plots with vis.gam()

```
vis.gam(x,
        view = NULL,
        cond = list(),
        n.grid = 30,
        too.far = 0,
        col = NA,
        color = "heat",
        contour.col = NULL,
        se = -1,
        type = "link",
        plot.type = "persp",
        zlim = NULL,
        nCol = 50,
        ...)
```

tacamp

Customizing interaction plots with vis.gam()

Customizing interaction plots with vis.gam() (2)

Customizing interaction plots with vis.gam()

vis.gam(mod, view = c("x1", "x2"), plot.type = "contour", too.far = 0.1) vis.gam(mod, view = c("x1", "x2"), plot.type = "contour", too.far = 0.05)

Options for perspective plots

vis.gam(x = mod, view = c("x1", "x2"), plot.type = "persp", se = 2)

tacamp

Options for perspective plots

datacamp

Options for contour plots

V

datacamp

Now let's make some plots!

Visualizing categoricalcontinuous interactions

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Categorical-continuous interactions

model4b <- gam(hw.mpg ~ s(weight, by = fuel) + fuel,</pre> data = mpg, method = "REML")

acamp

Factor-smooths

```
model4c <- gam(hw.mpg ~ s(weight, fuel, bs = "fs"),</pre>
                data = mpg,
                method = "REML")
```


latacamp

```
Family: gaussian
Link function: identity
Formula:
hw.mpg ~ s(weight, fuel, bs = "fs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.644 7.615 3.761 0.000223 ***
 ____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
               edf Ref.df
                              F p-value
s(weight,fuel) 7.71 19 53.12 <2e-16 ***
 ____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.832 Deviance explained = 83.8%
-REML = 518.54 Scale est. = 7.9735 n = 205
```

Plotting factor-smooths

tacamp

Let's practice!

Interactions with different scales: Tensors

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Interactions with one smoothing parameter $y = s(x_1, x_2)$

with smoothing parameter λ

Variables with different scales or wiggliness

Numeric terms from meuse on different scales:

	Х	У	elev	om	
1	181072	333611	7.91	13.6	
2	181025	333558	6.98	14	
3	181165	333537	7.8	13	
4	181298	333484	7.66	8	
5	181307	333330	7.48	8.7	
6	181390	333260	7.79	7.8	
7	181165	333370	8.22	9.2	
8	181027	333363	8.49	9.5	
9	181060	333231	8.67	10.6	
10	181232	333168	9.05	6.3	

acamp

Tensor smooths

tacamp

$$y = te(x_1, x_2)$$

with smoothing parameters λ_1, λ_2

 $gam(y \sim te(x1, x2), data = data,$ method = "REML")

 $gam(y \sim te(x1, x2, k = c(10, 20)), data = data,$ method = "REML")

Fit using s()

R datacamp

Tensor interactions $y = s(x_1) + s(x_2) + ti(x_1, x_2)$ with smoothing parameters $\lambda_1,\lambda_2,\lambda_3,\lambda_4$

qam(y ~ s(x1) + s(x2) + ti(x1, x2), data = data,method = "REML")


```
Family: gaussian
Link function: identity
Formula:
y \sim s(x1) + s(x2) + ti(x1, x2)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.318698 0.008697 36.65 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
           edf Ref.df F p-value
te(x1) 4.93 6.009 23.16 < 2e-16 *** # Separate terms for
te(x2) 3.42 4.242 10.35 2.75e-08 *** # each variable and
ti(x1,x2) 10.15 12.763 16.08 < 2e-16 *** # the interaction
 ____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.444 Deviance explained = 46.5%
-REML = -85.566 Scale est. = 0.037067 n = 500
```

tacamp

Example: tensor interactions

latacamp

$gam(y \sim s(x1) + s(x2) + ti(x1, x2), data = data,$ method = "REML")

Let's practice!

