Types of model outcomes

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Types of outcomes

Continuous outcomes

- Speed of a motorcycle (mph)
- Fuel efficiency of a car (mpg)
- Level of pollution in soil (g/kg)

Binary outcomes

- Presence or absence of an organism in a location
- Whether a purchase was made
- Yes/No answer on a survey

Probabilities and log-odds: logistic function

tacamp

Probabilities and log-odds: logit function

tacamp

Logistic and logit functions in R

plogis() # Logistic
qlogis() # Logit

qlogis(plogis(0.5))

0.5

qlogis(0.25) == log(1/3)

TRUE

Logistic GAMs with mgcv

```
gam(y \sim x1 + s(x2))
   data = dat,
   family = binomial,
   method = "REML")
```



```
Family: binomial
Link function: logit
Formula:
y \sim s(x1) + s(x2)
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.7330
                        0.1208 6.07 1.28e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
       edf Ref.df Chi.sq p-value
s(x1) 1.367 1.646 25.83 1.23e-05 ***
s(x2) 5.754 6.890 51.37 8.12e-09 ***
```

plogis(0.733)

acamp

0.6754633

head(csale)

R datacamp

0.00000		
0.00000	2494.414	0.0000
36.09506	2494.414	11.49123
17.60000	2494.414	0.0000
12.50000	2494.414	0.80000
59.10000	2494.414	20.80000
90.10000	2494.414	11.49123
mortgage_age cr	ed_limit	
182.0000	12500	
138.9601	0	
138.9601	Θ	
138.9601	Θ	
93.0000	Θ	
138.9601	0	
ľ	0.00000 36.09506 17.60000 12.50000 59.10000 90.10000 90.10000 10000 138.9601 138.9601 138.9601 93.0000 138.9601	0.00000 2494.414 36.09506 2494.414 17.60000 2494.414 12.50000 2494.414 59.10000 2494.414 90.10000 2494.414 90.10000 2494.414 mortgage_age cred_limit 182.0000 12500 138.9601 0 138.9601 0 93.0000 0 138.9601 0

Let's practice!

Visualizing Logistic GAMs

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Transforming scales

datacamp

Log-odds plots

plot(binom_mod)

datacamp

Converting partial effects

tacamp

plot(binom_mod, pages = 1, trans = plogis)

Converting partial effects (2)

plot(binom_mod, pages = 1, trans = plogis)

tacamp

Adding an intercept

tacamp

plot(binom_mod, pages = 1, trans = plogis, shift = coef(binom_mod)[1])

Adding an intercept (2)

tacamp

plot(binom_mod, pages = 1, trans = plogis, shift = coef(binom_mod)[1])

Incorporating intercept uncertainty

plot(binom_mod, pages = 1, trans = plogis, shift = coef(binom_mod)[1], seWithMean = TRUE)

Improving the plot

acamp

plot(binom_mod, pages = 1, trans = plogis, shift = coef(binom_mod)[1], seWithMean = TRUE, rug = FALSE, shade = TRUE, shade.col = "lightgreen", col = "purple")

Let's practice!

Making predictions

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

mgcv's predict() function

predict(log_mod2)

1	2	3	4
-0.8672827973	-2.9135420237	-0.4839780158	-0.1996086132
5	6	7	8
-0.4416783066	-1.2351679544	-0.6148559122	-2.9135420237

Prediction types

predict(log_mod2, type = "link")

1 2 3 4 -0.8672827973 -2.9135420237 -0.4839780158 -0.1996086132 5 6 7 8 -0.4416783066 -1.2351679544 -0.6148559122 -2.9135420237

predict(log_mod2, type="response")

1	2	3	4
0.29582001	0.05148818	0.38131322	0.45026288
5	6	7	8
0.39134114	0.22527819	0.35095230	0.05148818
• • •			

plogis(predict(log_mod2, type="link"))

itacamp

Standard errors

latacamp

predict(log_mod2, type = "link", se.fit = TRUE)

\$fit				
-	L	2	3	4
-0.8672828	3 -2.913542	0 -0.48397	780 -0.1996	6086
Į	5	6	7	8
-0.441678	3 -1.235168	0 -0.61485	559 -2.9135	5420
\$se.fit				
1	2	3	4	
0.2850848	0.1646090	0.2299404	0.2159088	
5	6	7	8	

Standard errors (2)

latacamp

Predictions on new data

```
trained_model <- gam(response ~ s(predictor),</pre>
                      data = train_df,
                      family = binomial,
                      method = "REML")
```

```
# Test data
test_predictions <- predict(trained_model,</pre>
                              type = "response",
                              newdata = test_df)
```


Explaining predictions by terms

predict(log_mod2, type = "terms")

latacamp

	s(n_acts)	s(bal_crdt_ratio)	s(avg_prem_balance)
1	1.2115213	0.3327855673	-0.135920526
2	-0.8850186	-0.4058818961	-0.135920526
3	0.5693622	0.2972364048	-0.135920526
4	0.8974704	0.3827671103	-0.135920526
5	0.8974704	-0.0727464938	-0.135920526
6	-0.6228781	0.1936974771	-0.135920526
7	0.3642246	0.3377181800	-0.135920526
8	-0.8850186	-0.4058818961	-0.135920526
9	1.0209905	0.3604064595	0.317309246
10	1.7675666	-0.4533384774	0.346837355

Explaining predictions by terms (2)

predict(log_mod2, type = "terms")[1,]

s(n_acts)	s(bal_crdt_ratio)
1.21152126	0.33278557
s(avg_prem_balance)	s(retail_crdt_ratio)
-0.13592053	0.06789949
s(avg_fin_balance)	s(mortgage_age)
-0.04057249	-0.29183903
s(cred_limit)	
-0.37055621	

plogis(sum(predict(log_mod2, type = "terms")[1,]) + coef(log_mod2)[1])

0.29582

tacamp

Let's practice!

Doing more with GAMs

NONLINEAR MODELING WITH GENERALIZED ADDITIVE MODELS (GAMS) IN R

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Chapter 1

- GAM theory
- Fitting GAMs
- Mixing linear and nonlinear terms

Chapter 2

- Interpreting GAMs
- Visualizing GAMs
- Model-checking and concurvity

Chapter 3

- 2-D Interactions and spatial data
- Interactions with different scales
- Continuous-categorical
 interaction

Chapter 4

- Logistic GAMs
- Plotting logistic outputs
- Making predictions

GAMs and the Tidyverse

library(broom)

augment(gam_model) tidy(gam_model) glance(gam_model)

library(caret)

train(x, y, method = "gam", ...)

Other types of smooths

?smooth.terms

Other types of outcomes/distributions

?family.mgcv

See Generalized Linear Models

Variable selection

?gam.selection

Complex model structures

?gam.models

See Hierarchical and Mixed Effects Models

Thank You!

