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Introduction

Moving beyond linearity

@ Linear models are widely used in econometrics.

@ In particular, linear regression, linear discriminant analysis, logistic
regression all rely on a linear model.

@ It is extremely unlikely that the true function f(X) is actually linear
in X. In regression problems, f(X) = E(Y|X) will typically be
nonlinear and nonadditive in X, and representing f(X) by a linear
model is usually a convenient, and sometimes a necessary,
approximation.

o Convenient because a linear model is easy to interpret, and is the
first-order Taylor approximation to f(X).

e Sometimes necessary, because with N small and/or p large, a linear
model might be all we are able to fit to the data without overfitting.

o Likewise in classification, it is usually assumed that some monotone
transformation of P(Y = 1|X) is linear in X. This is inevitably an »«;ﬁ
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Linear basis expansion

@ The core idea in this chapter is to augment/replace the vector of
inputs X with additional variables, which are transformations of X,
and then use linear models in this new space of derived input
features.

@ Denote by hp,(X) : RP — R the m-th transformation of X,
m=1,.... M. We then model

a linear basis expansion in X.

@ The beauty of this approach is that once the basis functions h,, have
been determined, the models are linear in these new variables, and/z<

%

the fitting proceeds as for linear models. NS A
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Introduction

Popular choices for basis functions h,,

Some simple and widely used examples of the h,, are the following:

@ hm(X) = Xm, m=1,...,p recovers the original linear model.

® hm(X) = X7 or hpn(X) = X;Xj allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. Note,
however, that the number of variables grows exponentially in the
degree of the polynomial. A full quadratic model in p variables
requires O(p?) square and cross-product terms, or more generally
O(pY) for a degree-d polynomial.

@ hm(X) = log(X;), \/Xj, ... permits other nonlinear transformations
of single inputs. More generally one can use similar functions
involving several inputs, such as h,(X) = || X]].

@ hm(X) =I(Lm < Xk < Unm), an indicator for a region of Xj. By
breaking the range of X, up into My such nonoverlapping regions %ﬁ

qb\

results in a model with a piecewise constant contribution for Xj. «x=




Lecture 7: Splines and Generalized Additive Models
Introduction

Discussion

@ Sometimes the problem at hand will call for particular basis functions
hm, such as logarithms or power functions.

@ More often, however, we use the basis expansions as a device to
achieve more flexible representations for f(.X).

@ Polynomials are an example of the latter, although they are limited
by their global nature — tweaking the coefficients to achieve a
functional form in one region can cause the function to flap about
madly in remote regions.
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Polynomials

Fitting polynomials

@ In most of this lecture, we assume p = 1.
o Create new variables hi(X) = X, ha(X) = X2, h3(X) = X3, etc.
and then do multiple linear regression on the transformed variables.

o We either fix the degree d at some reasonably low value, else use
cross-validation to choose d.

@ Polynomials have unpredictable tail behavior — very bad for
extrapolation.
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Example in R

x=seq(0,10,0.5)

n<-length(x)
y1=x[1:10]+2*cos(x[1:10])+2*rnorm(10)
xtest<- seq(-2,12,0.01)

ftest<- xtest+2*cos(xtest)

d<-3

plot(x1l,yl,x1lim=c(-2,12),ylim=c(-5,15),
main=paste(’degree = ’,as.character(d)))
for(i in 1:10){
y2=x[11:21]+2*cos(x[11:21])+2*rnorm(11)
points(x[11:21],y2,pch=i+1)
y<-c(yl,y2)
reg<-lm(y ~ poly(x,degree=d))
ypred<-predict(reg,newdata=data.frame(x=xtest),interval="c'" )=
lines(xtest,ypred[,"fit"],1ty=1) iﬁii‘
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Polynomials

Result, d =2

degree = 3
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Polynomials

Result, d = 3

degree = 5
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Polynomials

Result, d = 4
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Step Functions

@ Another way of creating transformations of a variable is to cut the
variable into distinct regions.

hi(X)=1(X < &), h(X)=1(& <X <&),...,
hm(X) = (X = Em-1)
@ Since the basis functions are positive over disjoint regions, the least

squares estimate of the model f(X) = Z:\n/’:l Bmhm(X) is Bm = Y m,
the mean of Y in the m-th region.
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Example in R

library("ISLR")

reg<-lm(wage ~ cut(age, c(18, 25, 50, 65, 90)),data=Wage)
ypred<-predict(reg,newdata=data.frame(age=18:80) ,interval="c")

plot (Wage$age,Wage$wage,cex=0.5,xlab="age",ylab="wage")
lines(18:80,ypred[,"fit"],1ty=1,col="blue",lwd=2)
lines(18:80,ypred[,"1lwr"],1ty=2,col="blue",lwd=2)
lines(18:80,ypred[, "upr"],lty=2,col="blue",lwd=2)
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Step functions — continued

@ Easy to work with. Creates a series of dummy variables representing
each group.

@ Useful way of creating interactions that are easy to interpret. For
example, interaction effect of Year and Age:

I(Year < 2005) - Age, I( Year > 2005) - Age

would allow for different linear functions in each age category.

@ Choice of cutpoints or knots can be problematic. For creating
nonlinearities, smoother alternatives such as splines are available.
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Piecewise Polynomials

@ Instead of a single polynomial in X over its whole domain, we can
rather use different polynomials in regions defined by knots. E.g.
(see figure)

| Bor + Braxi + Bax? + Barxd + e if xp <&,
[ .
Boz + Braxi + Boax? + Baax? + € if xi > &,

@ Better to add constraints to the polynomials, e.g. continuity.

@ Splines have the “maximum” amount of continuity.
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Splines
Regression splines

Piecewise Cubic
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Linear Splines

@ A linear spline with knots at &, k =1,..., K is a piecewise linear
polynomial continuous at each knot.

@ The set of linear splines with fixed knots is a vector space.

@ The number of degrees of freedom is 2(K +1) — K = K+ 2. We can
thus decompose linear splines on a basis of K + 2 basis functions,

K+2

y = Z Bmhm(x) + €.
m=1

@ The basis functions can be chosen as
hi(x)=1
ha(x) = x
hepo(x) = (x —&k)+, k=1,...,K, ;

where (-)4+ denotes the positive part, i.e., (x — &)+ = x — & if
x > & and (x — &)+ = 0 otherwise.

A=A

"y



Lecture 7: Splines and Generalized Additive Models
Splines

Regression splines
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Cubic Splines

@ A cubic spline with knots at &, k =1,..., K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each knot.

@ Enforcing one more order of continuity would lead to a global cubic

polynomial.

@ Again, the set of cubic splines with fixed knots is a vector space, and
the number of degrees of freedom is 4(K + 1) — 3K = K + 4. We
can thus decompose cubic splines on a basis of K + 4 basis functions,

K+4

Y=Y Bmhm(x) +e.
m=1

@ We can choose truncated power basis functions,
hk(X) = kal, k=1,....,4, Ao
3 QY
hiya(x) = (x —&k)3, k=1,...,K. S A
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Splines

Regression splines

order-M splines

More generally, an order-M spline with knots &, k=1,...,K is a
piecewise-polynomial of order M — 1, which has continuous
derivatives up to order M — 2.

A cubic spline has M = 4. A piecewise-constant function is an
order-1 spline, while a continuous piecewise linear function is an
order-2 spline.

The general form for the truncated-power basis set is

he(x)=x"1 k=1,..., M,
hesm() = (x— €041, k=1,...,K.

It is claimed that cubic splines are the lowest-order spline for which
the knot-discontinuity is not visible to the human eye. There is _
seldom any good reason to go beyond cubic-splines. fﬁ

X\
4

In practice the most widely used orders are M = 1,2 and 4. R
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Splines in R

library(’splines’)
fit<-lm(wage~bs(age,5) ,data=Wage)

ypred<-predict (fit,newdata=data.frame(age=18:80),interval="c")

plot (Wage$age,Wage$wage,cex=0.5,x1lab="age" ,ylab="wage")
lines(18:80,ypred[,"fit"],1ty=1,col="blue",lwd=2)
lines(18:80,ypred[,"1lwr"],1ty=2,col="blue",lwd=2)
lines(18:80,ypred[, "upr"],1ty=2,col="blue",lwd=2)

@ By default, degree=3, and the intersect is not included in the basis
functions.

® The number of knots is df-degree. If not specified, the knots are ==

placed at quantiles. )
RSt
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B-spline basis

@ Since the space of spline functions of a particular order and knot
sequence is a vector space, there are many equivalent bases for
representing them (just as there are for ordinary polynomials.)

@ While the truncated power basis is conceptually simple, it is not too
attractive numerically: powers of large numbers can lead to severe
rounding problems.

@ In practice, we often use another basis: the B-spline basis, which
allows for efficient computations even when the number of knots K
is large (each basis function has a local support).
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B-spline basis
Construction

o Before we can get started, we need to augment the knot sequence.

o Let & < & and &k < Eky1 be two boundary knots, which typically
define the domain over which we wish to evaluate our spline. We
now define the augmented knot sequence 7 such that

o <m<...<m< &
o Tium=¢&,j=1,....K
0 Ek+1 S TRiM+1 < Thim+2 < - oo < TK42M-

@ The actual values of these additional knots beyond the boundary are

arbitrary, and it is customary to make them all the same and equal to

&o and k41, respectively.
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B-spline basis

Construction — Continued

@ Denote by Bj n(x) the ith B-spline basis function of order m for the
knot-sequence 7, m < M. They are defined recursively in terms of
divided differences as follows:

B ( ) 1 ifr<x< Tit+1
i (x) =
b 0 otherwise

fori=1,...,K+2M —1. (By convention, B;; =0 if 77 = 7j41).

X — T
Bim=—"—"—"Bima(x)+ ————
Ti+m—1 — Ti Ti+m — Ti+1

Tivm — X
T Bit1,m—1(x)
fori=1,...K+2M —m.

o Thus with M =4, Bj4,i=1,...,K + 4 are the K 4 4 cubic %{ﬁ
B-spline basis functions for the knot sequence &. =
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B-spline basis
Properties

@ The B-splines span the space of cubic splines for the knot sequence &.

@ They have local support and they are nonzero on an interval spanned
by M + 1 knots (see next slide).
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Regression splines
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Splines
Natural splines

Variance of splines beyond the boundary knots

@ We know that the behavior of polynomials fit to data tends to be
erratic near the boundaries, and extrapolation can be dangerous.

@ These problems are exacerbated with splines. The polynomials fit
beyond the boundary knots behave even more wildly than the
corresponding global polynomials in that region.
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Natural splines
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Natural splines

Explanation of the previous figure

@ Pointwise variance curves for four different models, with X consisting
of 50 points drawn at random from U[0, 1], and an assumed error
model with constant variance.

@ The linear and cubic polynomial fits have 2 and 4 df, respectively,
while the cubic spline and natural cubic spline each have 6 df.

@ The cubic spline has two knots at 0.33 and 0.66, while the natural
spline has boundary knots at 0.1 and 0.9, and four interior knots
uniformly spaced between them.
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Natural cubic spline

@ A natural cubic spline adds additional constraints, namely that the
function is linear beyond the boundary knots.

@ This frees up four degrees of freedom (two constraints each in both
boundary regions), which can be spent more profitably by putting
more knots in the interior region.

@ There will be a price paid in bias near the boundaries, but assuming
the function is linear near the boundaries (where we have less
information anyway) is often considered reasonable.
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Natural cubic spline basis

@ A natural cubic spline with K knots has K degrees of freedom: it
can ve represented by K basis functions.

@ One can start from a basis for cubic splines, and derive the reduced
basis by imposing the boundary constraints. For example, starting
from the truncated power series basis,

3 K
=Y BX D 0(X = &)3,
j=0 k=1

the contraints f”(X) =0 and fG)(X) =0 for X < & and X > &k
lead to the conditions
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Natural cubic spline basis — continued

@ These conditions are automatically satisfied by choosing the
following basis,
Ni(X)=1, Ny(X)=X,

Nii2(X) = di(X) — dx_1(X), k=1,....K—2

with s s
di = (X _gk)-s- - (X _gK)-s-
Ek — &k
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Example in R

fit1<-1m(y ~ ns(x,df=b))
fit2<-1m(y ~ bs(x,df=5))

ypredi<-predict(fitl,newdata=data.frame(x=xtest),interval="c")
ypred2<-predict (fit2,newdata=data.frame(x=xtest),interval="c")

plot(x,y,xlim=range(xtest))

lines(xtest,ftest)
lines(xtest,ypredli[,"fit"],lty=1,col="red",lwd=2)
lines(xtest,ypred2[,"fit"],1ty=1,col="blue",1lwd=2)
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Result
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Using splines with logistic regression

@ Until now, we have discussed regression problems. However, splines
can also be used when the response variable is qualitative.

e Consider, for instance, natural splines with K knots. For binary
classification, we can fit the logistic regression model,

P(Y =1 X = x)
P(Y =0 X = x)

with £(x) = 33 BiNk(x).
@ Once the basis functions have been defined, we just need to estimate
coefficients 3 using a standard logistic regression procedure.

log = f(x)

@ A smooth estimate of the conditional probability P(Y = 1|x) can
then be used for classification or risk scoring.
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Example in R

class<-glm(I(wage>250) ~ ns(age,3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80) ,type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="1")
ii<-which(Wage$wage>250)

points(Wage$age[ii] ,rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii] ,rep(0,nrow(Wage)-length(ii)),cex=0.5)
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Splines for classification

Result
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Smoothing splines

Problem formulation

@ Here we discuss a spline basis method that avoids the knot selection
problem completely by using a maximal set of knots. The complexity
of the fit is controlled by regularization.

@ Problem: among all functions f(x) with two continuous derivatives,
find one that minimizes the penalized residual sum of squares

N

RSS(1,2) = (i — )2 + 1 [ 17" (0)Pet

i=1

where X is a fixed smoothing parameter.

@ The first term measures closeness to the data, while the second term
penalizes curvature in the function, and \ establishes a tradeoff
between the two. Special cases: A = 0 (no constraint on f) and f?ﬁ
A = oo (f has to be linear). =
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Smoothing splines
Solution

@ It can be shown that this problem has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the
unique values of the x;,i =1,..., N.

@ At face value it seems that the family is still over-parametrized, since
there are as many as N knots, which implies N degrees of freedom.
However, the penalty term translates to a penalty on the spline
coefficients, which are shrunk some of the way toward the linear fit.

@ The solution is thus of the form

where the Nj(x) are an N-dimensional set of basis functions for %ﬁﬁ

T

representing this family of natural splines. o
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Computation

@ The criterion can be written as
RSS(6,)) = (y — NO)T (y — N9) + X0 Qu8,

where {N},J = NJ'(X,') and {QN}jk = f Nj{/(t)NL/(t)dt.
@ The solution is R
0=(N"N+X2y) INTy,
a generalized ridge regression.
@ The fitted smoothing spline is given by

N
Fx) =D N;(x)b.
j=1

@ In practice, when N is large, we can use only a subset of the N
interior knots (rule of thumb: number of knots proportional to
log N). ot
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Degrees of freedom

o Denote by f the N-vector of fitted values f(x;) at the training
predictors x;. Then,

F=No=(N"N+XQ\) !Ny =5,y

@ As matrix Sy does not depend on y, the smoothing spline is a linear
smoother.

@ In the case of cubic spline with knot sequence £ and, we have
f =B =(BIB:) 'Bly = Hey,

where B¢ is the N x M matrix of basis functions. The degrees of
freedom is M = trace(H).

o By analogy, the effective degrees of freedom of a smoothing spline is _
defined as ﬁﬁ

%

dfy = trace(S)) -
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Selection of smoothing parameters

@ AsA—0,dfy > Nand S, = I. As A\ — oo, dfy — 2 and
S, — H, the hat matrix for linear regression on x.

@ Since dfy is monotone in A\, we can invert the relationship and
specify A by fixing dfy ( this can be achieved by simple numerical
methods). Using df in this way provides a uniform approach to
compare many different smoothing methods.

@ The leave-one-out (LOO) cross-validated error is given by

RSSev(\) = 3 A oyy2 - N | Y= Alx) 2
ov( )_;(y"_ A (%)) _; m
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Smoothing splines in R

ss1<-smooth.spline(x,y,df=3)
ss2<-smooth.spline(x,y,df=15)
ss<-smooth.spline(x,y)

plot(x,y)
lines(x,ss1$y,col="blue",lwd=2)
lines(x,ss28$y,col="blue",lwd=2,1ty=2)
lines(x,ss$y,col="red",lwd=2)

> ss$df
T7.459728
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Application to logistic regression

@ The smoothing spline problem has been posed in a regression
setting. It is typically straightforward to transfer this technology to
other domains.

@ Here we consider logistic regression with a single quantitative input

X. The model is
P(Y =1X=x)
e By o x=x) )
which implies
ef(x)
P(Y:”X:X)ZWZP(X) .
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Penalized log-likelihood

@ We construct the penalized log-likelihood criterion

N
1 2) = Yl log o) + (1) gl - -3 [1r oy

—Z[y, x) ~log(1 + ") — 2\ / [F(6)) 2l

@ As before, the optimal f is a finite-dimensional natural spline with
knots at the unique values of x. We can represent f as

N
= Ni(x)9;.

j=1 = N
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Optimization

@ We compute the first and second derivatives

0L(0) T

N NT(y—p)—A\Q
20 (y —p) — \Q0

d20(6) -

29007 = NTWN -,

where p is the N-vector with elements p(xi), and W is a diagonal
matrix of weights p(x;)(1 — p(x;))-
o Parameters §; can be estimated using the Newton method,

grew _ gota _ (OPUO°)\ T 906
- 96007 00
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Nonparametric logistic regression in R

library (gam)
class<-gam(I(wage>250) ~ s(age,df=3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80) ,type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="1")
ii<-which(Wage$wage>250)

points(Wage$age[ii] ,rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii] ,rep(0,nrow(Wage)-length(ii)),cex=0.5)
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Result
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Motivation

@ Regression models play an important role in many data analyses,
providing prediction and classification rules, and data analytic tools
for understanding the importance of different inputs.

@ Although attractively simple, the traditional linear model often fails
in these situations: in real life, effects are often not linear.

@ Here, we describe more automatic flexible statistical methods that
may be used to identify and characterize nonlinear regression effects.
These methods are called generalized additive models (GAMs).
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GAM for regression

@ In the regression setting, a generalized additive model has the form
E(Y|X1,X2, - ,Xp) = o+ fl(Xl) + f2(X2) + ...+ fp(Xp)

@ As usual Xi,X3,..., X, represent predictors and Y is the outcome.

@ The f;'s are unspecified smooth (nonparametric) functions.
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GAM for binary classification

@ For two-class classification, recall the logistic regression model for
binary data discussed previously. We relate the mean of the binary
response p(X) =P(Y = 1|X) to the predictors via a linear
regression model and the logit link function:

w(X)
1—pu(X)
@ The additive logistic regression model replaces each linear term by a

more general functional form

u(X)
1—p(X)
where again each f; is an unspecified smooth function.
® While the nonparametric form for the functions f; makes the model,—.
more flexible, the additivity is retained and aIIows us to interpret tﬁ’
model in much the same way as before. R

|og :a+B1X1+...+,6’po

log =a+ (X)) + ...+ (Xp)




Lecture 7: Splines and Generalized Additive Models
Generalized Additive Models
Principle

GAM: general form

@ In general, the conditional mean u(X) of a response Y is related to
an additive function of the predictors via a link function g:

glu(X)] = a+ A(X1) +... + f(Xp)

e Examples of classical link functions are the following:

o g(p) = p is the identity link, used for linear and additive models for
Gaussian response data.

o g(u) = logit(u) as above, or g(u) = probit(u), the probit link
function, for modeling binomial probabilities. The probit function is
the inverse Gaussian cumulative distribution function:
probit(u) = ®~*(y).

o g(u) = log(u) for log-linear or log-additive models for Poisson count

data. x%ﬁ:

.,
P
e

2
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Mixing linear and nonlinear effects, interactions

@ We can easily mix in linear and other parametric forms with the
nonlinear terms, a necessity when some of the inputs are qualitative
variables (factors).

@ The nonlinear terms are not restricted to main effects either; we can
have nonlinear components in two or more variables, or separate
curves in X; for each level of the factor X, e.g.,

o g(p) =XTB+ >, axl(V = k) + f(Z) — a semiparametric model,
where X is a vector of predictors to be modeled linearly, oy the effect
for the kth level of a qualitative input V/, and the effect of predictor
Z is modeled nonparametrically.

o g(u)=Ff(X)+> ,&(Z)I(V = k) — again k indexes the levels of a
qualitative input V/, and thus creates an interaction term for the
effect of V and Z,

e etc... /”\

e

N %
e
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GAMSs with natural splines

o If we model each function f; as a natural spline, then we can fit the
resulting model using simple least square (regression) or likelihood
maximization algorithm (classification).

@ For instance, with natural cubic splines, we have the following GAM:
p K@)
g() =D BiNi(X)) +e,

j=1 k=1

where K(j) is the number of knots for variable j.



Lecture 7: Splines and Generalized Additive Models
Generalized Additive Models
Fitting GAMs

Example in R

library("ISLR") # For the Wage data
library("splines")

fitl<-1m(wage ~ ns(year,df=5)+ns(age,df=5)+education,data=Wage)
library("gam")

fit2<-gam(wage ~ ns(year,df=5)+ns(age,df=5)+education,data=Wage)
plot(£it2,se=TRUE)
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GAMs with smoothing splines

o Consider an additive model of the form
Y =a+ A(X1)+ H(X2)+ ...+ (Xp) +e,

where the error term € has mean zero.

@ We can specify a penalized sum of squares for this problem,

N P

2
P
SS(afieeofo) = 3 (vima= 2 filxi) | +2 /\1/5‘"(13')26’1‘1,
i=1 j=1 j=1

where the \; > 0 are tuning parameters.

@ It can be shown that the minimizer of SS is an additive cubic spllne
model; each of the functions f; is a cubic spline in the component XS
with knots at each of the unique values of x;,i =1,..., N.
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Unicity of the solution

@ Without further restrictions on the model, the solution is not unique.

@ The constant « is not identifiable, since we can add or subtract any
constants to each of the functions f;, and adjust a accordingly.

@ The standard convention is to assume that Z,N:1 fi(x;j) = 0 for all j
— the functions average zero over the data.
o It is easily seen that & = ave(y;) in this case.

e If in addition to this restriction, the matrix of input values (having
ijth entry xij) has full column rank, then SS is a strictly convex
criterion and the minimizer is unique.
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Backfitting algorithm

A simple iterative procedure exists for finding the solution.

We set & = ave(y;), and it never changes.

We apply icubic smoothing spline S; to the targets R
{yi — @ — f(xu)}, as a function of x;; to obtain a new estimate ;.

@ This is done for each predictor in turn, using the current estimates of
the other functions f, when computing y — a — Zk# fi (Xik)-

The process is continued until the estimates f; stabilize.

This procedure (known as backfitting) is grouped cyclic coordinate
descent algorithm.
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Backfitting algorithm

~

Q Initialize: & = ave(y;), fi =0, Vi, j.
@ Cycle: j=1,2,...,p,1,2,...,p,...,

oS [{yi—a—> hla)t,
k#j

o1 M
j < f = Zﬂxu)
/:1

<h)

until the functions Echange less than a prespecified threshold.
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Example in R

library("gam")
fit3<-gam(wage ~ s(year,df=5)+s(age,df=5)+education,data=Wage)
plot(£fit3,se=TRUE)
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