What is a hierarchical model?

HIERARCHICAL AND MIXED EFFECTS MODELS IN R

Richard Erickson Data Scientist

Course overview

- Components for mixed-effect models
- Applying and interpreting linear mixed-effect models
- Generalized linear mixed-effect models
- Repeated measure models

Why do we use a hierarchical model?

- Data nested within itself
- Pool information across small sample sizes
- Repeated observations across groups or individuals

Other names for hierarchical models

- Hierarchical models: Nested models, Multi-level models
- Regression framework
 - "Pool" information
 - "Random-effect" versus a "fixed-effect"
 - "Mixed-effect" (linear mixed-effect model; LMM)
 - Linear mixed-effect regression (Imer) 0
- Repeated sampling: "Repeated-measures", "Paired-tests"

School test scores

Meta-data:

- Gain in math scores for individual students from kindergarten to 1st grade
- Part of a national-level assessment in US
- Subset of data from West. Welch, and Galecki

Student-level variables:

- Student ID: childid
- Math test-score gain: \bullet mathgain
- Math kindergarten score: mathdind
- Student's sex: sex
- Student's minority status: minority

School test scores

Classroom-level variables:

- Classroom id: classid
- Teacher's math training: mathprep
- Teacher's math test knowledge test score: mathknow
- Teacher's years teaching: yearstea

School-level variables:

- School ID: schoolid
- School's household poverty level: housepov
- School's socioeconomic status: ses

Let's practice!

Parts of a regression HIERARCHICAL AND MIXED EFFECTS MODELS IN R

Richard Erickson Data Scientist

An intercept

 $y = eta + \epsilon$

Multiple intercepts

 $y = eta_0 + eta_2 x_2 + eta_3 x_3 + \epsilon$

 $y=eta_1x_1+eta_2x_2+eta_3x_3+\epsilon$

Camb

Linear models in R

lm(formula, data)

 $lm(y \sim x, data = myData)$

anova(lm(y ~ x, data = myData))

A simple linear regression with slopes

 $y\sim eta_0+eta_1 x+\epsilon$

Multiple regression

 $y\sim eta_0+eta_1x_1+eta_2x_2+\ldots+\epsilon$

Multiple regression caveats

- Independence of predictor variables ullet
- "corrected for..."
- Simpson's paradox
- Only linear
- Interactions may be important

Multiple regression in R tips

- $lm(y \sim x 1)$ estimates an intercept for each x \bullet
- Numeric versus factors
- Scaling parameters and slopes
- $lm(y \sim x1 + x2 + x1:x2)$ can be written as lm(y ~ x1 * x2)

Refresher of running and plotting a linear regression in

```
reg_model <- lm(response ~ predictor, data = reg_demo)</pre>
summary(reg_model)
reg_model
reg_coef_plot <- tidy(reg_model)</pre>
ggplot(reg_model, aes(x = predictor, y = response)) +
    geom_point() +
    theme_minimal() +
    geom_abline(intercept = reg_model$estimate[1],
                slope = reg_model$estimate[2])
```


Let's practice!

Random-effects in regressions

HIERARCHICAL AND MIXED EFFECTS MODELS IN R

Richard Erickson Data Scientist

Algebraic representation

 $y\sim eta_i x+\epsilon$

 $eta_i \sim \operatorname{Normal}(\mu, \sigma)$

R syntax

```
library(lme4)
lmer(y ~ x + (1 | random_group), data = my_data)
lmer(y ~ x + (random_slope | random_goup),
     data = my_data)
```


Random-effect models with school data

- 1. Does the sex of a student impact their knowledge gain?
- 2. Does the teacher's training impact the gain and does the teacher's math knowledge impact the gain?

Let's practice!

