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models
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1 Introduction

Generalized linear models (GLMs) expand the the well known linear model to accommodate
non-normal response variables in a single unified approach. It is common to find response
variables which do not fit the standard assumptions of the linear models (normally distributed
errors, constant variance, etc.), for example: count data, dichotomous variables, truncated
data, etc. The GLMs is based on well developed theory, starting with Nelder and Wedderburn
(1972) and McCullagh and Nelder (1989), since then, and with the advances in statistical
software, these models have become a basic tool for most researchers.
There are two fundamental issues in the notion of generalized linear models: the distribution
of the response (as we mentioned above), but also the model that relates the mean response
to the regression variables.

1.1 Motivating examples

We will motivate the need for GLMs, using two data sets where the distribution of the
response variable has the property that the mean response, which is the expected response
at each data point, and the variance of the response are related.

Toxicity experiment

The experiment tried to establish the relationship between the concentration of a toxic agent
(nicotine) and the number of insects (common fruit fly) killed, the data can be found in Myers
et al. (2002): The data follow a Binomial distribution

x
Concentration n y

(g/100cc) Number of insects Number Killed Percent Killed
0.1 47 8 17.0
0.15 53 14 26.4
0.20 55 24 43.6
0.30 52 32 61.5
0.50 46 38 82.6
0.70 54 50 92.6
0.95 52 50 96.2

Table 1: Toxicity experiment data

yi ∼ B(ni, pi) E[yi] = nipi(xi) V ar[yi] = nipi(1− pi)

Clearly, the variance and the mean are a function of predictor variables, and mean and
variance are related. Using ordinary linear regression to predict the percentage of flies killed
would assume that the data are normally distributed, which is false, and with this type of
data we have the constrain : 0 ≤ pi ≤ 1 which is not taken into account in linear regression.
Fitting the model pi = β0 + β1xi + εi we obtain
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(lm(perc~x))$fitted

1 2 3 4 5 6

0.3066231 0.3532890 0.3999550 0.4932869 0.6799507 0.8666145

7

1.0999442

The fitted value of the last point is greater than 1!!!. Also, as we see in figure 1, the model
is clearly non-linear
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Figure 1: Plot of concentration versus percentage of animals killed and fitted line.

Fissures experiment

Nelson (1982) discusses an experiment to determine the relationship between the time in use
and the number of fissures in turbines

hours fissures

[1,] 400 0

[2,] 1000 212

[3,] 1400 66

[4,] 1800 511

[5,] 2200 150

[6,] 2600 351

[7,] 3000 378

[8,] 3400 78

[9,] 3800 748

[10,] 4200 840

[11,] 4600 756
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The data follow now a Poisson distribution, hence the mean equals the variance and we have
the constraint that fitted values must be positive, fitting lm(fissures ∼ hours) we get
that the fitted value for the first observation is negative

lm(fissures~hours)$fitted

1 2 3 4 5 6 7 8

-1.47929 101.17751 169.61538 238.05325 306.49112 374.92899 443.36686 511.80473

9 10 11

580.24260 648.68047 717.11834

The solution in both cases is to develop a proper statistical model, this is what generalized
linear models do.

2 The exponential family

An important unifying concept underlying GLM is the exponential family of distribu-
tions. The exponential family form originates with Fisher (1934).
Members of the exponential family of distributions all have probability density (or probabil-
ity mass) functions that can be expressed in the form

f(y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
(3.1)

where, in each case, a(.), b(.) and c(.) are specific functions. The parameter θ is a canonical
location parameter and φ is a dispersion parameter. The Binomial, Poisson and Normal
distribution (among others) are members of the exponential family. The most important
case is the Normal distribution, its density function is:

f(y; µ, σ) =
1√
2πσ

exp
{
−[y − µ]2/2σ2

}
which we can rewrite as

= exp

{
(yµ− µ2/2)/σ2 − 1

2

[
y2/σ2 + ln(2πσ2)

]}
Therefore, θ = µ, b(θ) = µ2/2, a(φ) = φ, φ = σ2 and

c(y, φ) = −1

2

[
y2

σ2
+ ln(2πσ2)

]
Exercise 1

Find θ, φ, a(.), b(.) and c(.) for the Poisson, binomial, exponential and gamma distribu-
tions.

2.1 The exponential family form and maximum likelihood

In order to obtain estimates of the unknown vector of parameters θ, given data values, we
can employ maximum likelihood. It is more convenient to work with the ln of the likelihood
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function, and this that not change any of the resulting parameter estimates. Using (3.1),
the log-likelihood function for an exponential family distribution is:

l(θ, φ|y) = ln

(
exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

})
=

yθ − b(θ)

a(φ)
+ c(y, φ) (3.2)

The score function is the first derivative of the log-likelihood function with respect to the
parameters of interest. For simplicity we will treat φ as a nuisance parameter (not of primary
interest) and take derivatives with respect to θ, the resulting score function is

∂l(θ)

∂θ
=

y − ∂

∂θ
b(θ)

a(φ)
=

y − b′(θ)

a(φ)
(3.3)

∂2l(θ)

∂θ2 = −b′′(θ)

a(φ)
(3.4)

Exercise 2

Using the following results (see for example Rice (1995, chap. 8))

E

(
∂l(θ)

∂θ

)
= 0 E

(
∂2l(θ)

∂θ2

)
+ E

(
∂l(θ)

∂θ

)2

= 0

show that
E(y) = b′(θ) V ar(y) = b′′(θ)a(φ) (3.5)

3 Components of a generalized linear model

Let start with the standard linear regression model:

y = Xβ + ε ε ∼ N(0, σ2I) E(y) = µ = Xβ

where Xβ is a linear combination of predictor variables called linear predictor (which is
represented as η), in this case the mean µ is directly linked to the linear predictor, i.e., in
this case µ = η. From this simple model we can see easily two components of the model:
the probability distribution of the response and the linear structure. The generalization of
the linear model has the following components:

1. Random component: y is a vector of random components i.i.d. according to a
specific exponential family distribution with mean µ.

2. Systematic component: is the linear predictor η = Xβ. This describes how the
location of the response distribution changes with the explanatory variables.

3. Link function: It is a monotonic differentiable function which links the mean and the
linear predictor

η = g(µ) E(y) = µ = g−1(η) (3.6)
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In the case of a linear regression model µ = η, and thus the link function is the identity
link.
There are many choices of link function. The canonical link function is a function
which transforms the mean to the canonical location parameter θ

η = g(µ) = θ ⇒ g is a canonical link

Using the results from Exercise 1, the following table shows the canonical links for the most
common distributions used in GLMs:

Distribution Canonical Link
Normal η = µ (identity link)
Binomial η = ln

(
P

1−P

)
(logistic link)

Poisson η = ln(µ) (log link)
Exponential η = 1

µ (reciprocal link)

Gamma η = 1
µ (reciprocal link)

Table 2: Canonical links for the generalized linear model

We can view the selection of the link function as similar to the choice of a transformation
on the response. However, the link function is a transformation on the population mean,
not the data. More details on link functions can be found in McCullagh and Nelder (1989,
chap. 2)

4 Estimating Generalized Linear Models

We saw in section 2 how to estimate θ using maximum likelihood. However, this is not useful
in practice, because, θ will depend on the exploratory variables in general, and when using
a canonical link, θ = η = Xβ, therefore β are now our parameters of interest.

4.1 General case

Given a vector of observations y = (yi, y2, . . . , yn)′. The log likelihood is

l(θ|y) =
n∑

i=1

((yiθi − b(θi)/a(φ) + c(yi, φ)) (3.7)

Therefore the score function

∂l

∂β
=

∂l

∂θi

∂θi

∂β
(3.8)

=
n∑

i=1

(yi − b′(θi))

a(φ)

∂θi

∂β
(3.9)
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but ηi = g(µi) = β′xi and because of (3.5) we have that

g(b′(θi)) = β′xi

g′(b′(θi))b
′′(θi)

∂θi

∂β
= xi

hence g′(µi)b
′′(θi)

∂θi

∂β
= xi

and so
∂l

∂β
=

n∑
i=1

(yi − µi)

a(φ)g′(µi)b′′(θi)
xi

i.e.
∂l

∂β
=

n∑
i=1

(yi − µi)

g′(µi)Vi

xi

where Vi = V ar(yi) = a(φ)b′′(θi) as seen in (3.5).

β̂ is found as the solution of ∂l

∂β
= 0. In general, this set of equations needs to be solved

iteratively, if we use the Newton-Raphson algorithm

∂l

∂β

∣∣∣∣
β1

≈ ∂l

∂β

∣∣∣∣
β0

+
∂2l

∂ββ′

∣∣∣∣
β0

(β1 − β0) (3.10)

0 =
∂l

∂β

∣∣∣∣
β0

+
∂2l

∂ββ′

∣∣∣∣
β0

(β1 − β0) (3.11)

find β̂1 from β0 and so on; this process gives βγ → β̂.

In practice, the value of the second derivative of the score function is replaced by its ex-
pected value, this is called Iteratively re-weighted least squares (IRLS). Using

E

(
∂2l(β)

∂ββ′

)
= −E

(
∂l(β)

∂β

)2

we find that

E

(
∂2l(β)

∂ββ′

)
= −E

(
n∑

i=1

(yi − µi)
2

(g′(µi)Vi)
2xix

′
i

)

= −
n∑

i=1

Vi

(g′(µi))
2 V 2

i

xix
′
i

= −
n∑

i=1

wixix
′
i

where wi = 1/Vi (g
′(µi))

2. we can write the expression above in matrix form:

E

(
∂2l(β)

∂ββ′

)
= −X ′WX
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where W is a diagonal matrix with diagonal elements wi. Hence, we can say that if β̂ is a

solution of
∂l(β)

∂β
= 0, then β̂ is asymptotically Normal with mean β and covariance matrix

(X ′WX)−1.

Equation (3.11) is now,

βnew = βold −
(

E

[
∂l(β)

∂ββ′

])−1

βold

∂l

∂β

∣∣∣∣
βold

= βold + (X ′WX)−1X ′W (y − µold)g
′(µold)

= (X ′WX)−1X ′Wz

where z = Xβold+(y−µold)g
′(µold) = ηold+(y−µold)g

′(µold), and z is called working vector.

Therefore, IRLS based on the Newton-Raphson method can be summarized as follows

1. Obtain an initial value of β, say β̂old.

2. Use β̂old to estimate W and µold.

3. Let η̂old = Xβ̂old. Get znew.

4. Obtain a new estimate β̂new, and repeat steps 2 to 5 until convergence.

Canonical link case

In general, in glms the value of the second derivative of the log-likelihood and its expec-
tation may be different. However, if the canonical link is used, both matrices are the same,
and wi = 1/g′(µi). The proof of that result is left to the reader (Exercise 3).
Hint: Use the results on top of page 8 to prove that g′(µi)b

′′(θi) = 1, then then use this
results after taking derivatives in equation (3.9)

What happens when the assumptions are not satisfied?

There are a vast number of modelling problems where: 1) responses are correlated, and
2) responses are independent but do not belong to an exponential family. Wedderburn
(1974) developed the notion of quasi-likelihood which exploits the fact that the score func-
tion involves the distribution of the response only through the first two moments, i.e., to
define a quasi-likelihood function we need only specify a relation between the mean and the
variance of the observations.
For a one parameter exponential family, the log-likelihood is equal to the quasi-likelihood.

4.2 Estimation of the dispersion parameter

With the exception of the Binomial and Poisson distributions, the dispersion parameter is not
necessarily known, and it will have to be estimated. Note that for the estimation of β lacking
knowledge of φ is not a problem, since the likelihood score equations are independent of φ. In
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the case of the Normal distribution, the dispersion parameter φ = σ2 is estimated so that the
scaled residual deviance equals the degrees of freedom, i.e., σ̂2 = RSS/(n− p) = D/(n− p),
and so d/φ̂ = n − p. The extension of this to GLMs would be to estimate φ as the mean
squared Pearson residual

φ̂ =

∑n
i=1 r2

iP

n− p

4.3 Example 1

We will use the simple linear regression through the origin as example. Therefore

yi ∼ N( βxi︸︷︷︸
µi

, σ2)

In section 2 we saw that the link function is the identity, and θi = µi = xiβ, b(θ) = µ2/2,
and φ = σ2. Hence, Vi = σ2, g(µ) = µ ⇒ g′(µ) = 1, and wi = 1/Vi(g

′(µ))2 = 1/σ2. Then,

dl

dβ
=

n∑
i=1

yi − µi)xi

g′(µi)Vi

=
n∑

i=1

(yi − xiβ)xi

σ2
=

1

σ2
x′(y − xβ)

E

(
d2l

dβ2

)
= −

n∑
i=1

wix
2
i = −

n∑
i=1

x2
i /σ

2 = −x′x/σ2

z = xβold + (y − µold)g
′(µold) = xβold + (y − µold) = xβold + (y − xβold) = y.

Therefore, only one iteration is necessary and

β̂ = (x′x)−1xy

which is the least squares estimate of β.

Exercise 4: The second-hand store

The data set lumber.txt contains data on number of customers visiting a store in a certain
region and 5 independent variables: number of housing units in the region, average household
income, average housing unit age in region, distance to the nearest competitor and distance
to store in miles.
The objective is to compare the fitting of the glm() function in R :

fit<-glm(Customers~Housing+Income+Age+Competitor+Store,family=poisson)

summary(fit)

with the homemade fitting using IRLS directly, and check the importance of the starting
values on the number of iterations till convergence.

5 Inference

Returning to our original glm model, with log-likelihood given in (3.7), with E(y) = µ,
g(µ) = Xβ. There are several ways of testing hypothesis about the components of β.
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1. If we wish to test, e.g., β1 = 0 (the first component of β), the procedure is to find β̂1

and se(β̂1) and refer |β̂1|/se(β̂1) to N(0, 1), and reject β1 = 0 if this is too large.
Remember that se(β̂1) is obtained as the squared root of the (1, 1) element of the
inverse of the matrix

∂l

∂β∂β′

∣∣∣∣ ˆβ

So here we are using the asymptotic normality of the maximum likelihood estimate β̂
and the formula of its asymptotic variance. Therefore we need a large sample!.

2. If we have a small sample, the normal approximation may not work well. An alternative
is to follow the Analysis of Variance method. The basis of this is to have a measure
of the model fit which measures the discrepancy between the model and the data. For
Normal data this is the Residual sum of squares, for non-Normal data this measure is
called the Deviance. In general, the deviance is based on the value of the (maximized)
log-likelihood. The test is then based on the reduction of this measure of fit. A good
approximation to the distribution of this reduction is the Chi-squared distribution.
Thus, we can test the significance of parameters using a Chi-squared test.
In general, suppose that we want to test β ⊂ ωr (the “reduced” model, e.g. β1 = 0)
against β ⊂ ωf (the “full” model) where ωr ⊂ ωf . Consider the difference in the
maximum of the log-likelihood for the full and the reduced model. Let Lf denote
the maximized value of the log-likelihood under the full model (with β1 present) and
Lr denote the maximized value of the log-likelihood under the reduced model (with
β1 = 0). Note that Lf is at least as large as Lr (why?). The test statistic is:

S(ωr, ωf ) = −2(Lr − Lf ) = 2
∑

i

[
yi

(
θ̃i − θ̂i

)
−
(
b(θ̃i)− b(θ̂i)

)]
/φ

where θ̃i=mle under ωr and θ̂i=mle under ωf .

The distribution of S(ωr, ωf ) is approximated by a χ2 with degrees of freedom equal to
the difference between the number of parameter in the full and the reduced model (if
we are testing β1 = 0, then, χ2

1). Confidence intervals for the parameters are derived
from the χ2 distribution.

Scaled Deviance: A saturated model is one that perfectly fits the data (i.e. there are as
many parameters as observations, and the fitted values are equal to the observed values).
Let ls be the log-likelihood of the saturated model and let lm be the maximized value of the
log-likelihood of the model of interest. The Scaled deviance of the model of interest is

ScaledDeviance = S(y, µ̂) = −2(L(µ̂, φ, y)− L(y, φ, y) = −2(lm − ls)

and the deviance is
Deviance = D(y, µ̂) = S(y, µ̂)φ
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Therefore, the scaled deviance can be seen as the test statistic for testing the hypothesis
that all parameters in the saturated model, which are not in the model of interest, are equal
to zero. In the case of Binomial or Poisson data, φ = 1, and so both deviances are the same.
In the case of Normal data φ = σ2, then, the Scaled deviance follows and F distribution.

Exercise 5:

Show that the deviance for data yi ∼ N(µi, σ
2) is

∑n
i=1(yi − µi)

2

6 Diagnostics for GLMs

Diagnostics for the GLM are mostly linear regression diagnostics based on the last iteration
of the IRLS algorithm.

6.1 Residuals

In ordinary linear regression, the residuals yi − µ̂i are used to detect the violation of the
assumptions, such as the non-homogeneous variance, etc. In GLMs there are three types of
residuals

1. Response residuals: yi− µ̂i, they are not appropriate since V ar(yi) is not constant.

2. Pearson residuals:

ri,P =
yi − µ̂i√
V̂ ar(yi)

They have constant variance and mean zero. Mostly useful for detecting variance
misspecification.

3. Deviance residuals:

sign(yi − µ̂i)
√

d2
i

where di is the contribution to the model deviance of the ith observation. These resid-
uals have the property that they carry the same sign as yi−µ̂i, and sum of they squares
is the deviance.
For many models the deviance residuals are closer to a Normal distribution than the
Pearson residuals, and so they are more appropriate for constructing diagnostic plots.

4. Standardized residuals: Both the Pearson and the deviance residuals can be variance-
standardized and corrected for the effects of leverage by dividing them by

√
φ(1− hii),

in most cases φ = 1, and when it is not, it is replaced by an estimate. These residuals
should be approximately N(0, 1) for Poisson and binomial models with large counts
and should lie within -2 and +2. McCullagh and Nelder (1989, chap. 12) recommend
doing several checks:
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(a) Informal checks using residuals: Plot standardized deviance residuals against
the linear predictor η̂ or the fitted values µ̂ transformed to the constant infor-
mation scale of the error distribution, this plot should have no pattern. Typical
deviations are:

• Appearance of curvature in the mean

• Systematic change of the range with the fitted values

The curvature may arise because of: bad choice of the link function, wrong choice
of the scale or covariates.

(b) Checking the variance function: Plot absolute values of residuals against
fitted values, an ill chosen variance function will result in a trend in the mean.
For example, we could choose the variance to be a linear function of the mean,
but it might be a quadratic function instead.

(c) Checking the link function: A plot of the working vector z described in page
9 against the linear predictor η gives an informal check for the link function. If
the link function is correct this pattern is a straight line (why?).

(d) Measure of leverage: In ordinary regression we used the diagonal elements of
the hat matrix as a measure of leverage. The hat matrix is obtained from the last
iteration of IRLS. What is the form of this matrix?

(e) Measure of influence: The equivalent of the Cook’s distance for a GLM is

Di =
(β̂ − β̂(i))

′(X ′WX)(β̂ − β̂(i))

pφ̂
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