Parameters vs hyperparameter tuning in R

Dr. Shirin Elsinghorst Senior Data Scientist

R datacamp

About me

www.shirin-glander.de

Nerd-topia

- HYPERPARAMETER TUNING IN R

"Hyper"parameters vs model parameters

Let's look at an example dataset:

head(breast_cancer_data)

#	A tibble:	6 x 11				
	diagnosis	concavity_mean	symmetry_mean	fractal_dimension	perimeter_se	<pre>smoothness_se</pre>
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	М	0.300	0.242	0.0787	8.59	0.00640
2	Μ	0.0869	0.181	0.0567	3.40	0.00522
3	Μ	0.197	0.207	0.0600	4.58	0.00615
4	Μ	0.241	0.260	0.0974	3.44	0.00911

• And build a simple **linear model**.

Let's start simple: Model parameters in a linear model

Create linear model

linear_model <- lm(perimeter_worst ~ fractal_dimension_mean, data = breast_cancer_data)</pre>

Get coefficients summary(linear_model)\$coefficients

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	167.60	25.91	6.469	3.9e-09	***
fractal_dimension_mean	-926.39	392.86	-2.358	0.0204	*

Let's start simple: Model parameters in a linear model

- Model **parameters** are being fit (i.e. found) during training. \bullet
- They are the **result** of model fitting or training.
- In a linear model, we want to find the **coefficients**.

(Intercept) fractal_dimension_mean 167.5972 -926.3866	linear_model\$coefficients				
167.5972 -926.3866	(Intercept)	fractal_dimension_mean			
	167.5972	-926.3866			

We can think of them as the **slope** and the **y-intercept** of our model.

Coefficients in a linear model

Model parameters vs hyperparameters in a linear model

- *Remember*: model **parameters** are being fit (i.e. found) during training; they are the **result** of model fitting or training.
- Hyperparameters are being set before training.
- They specify **HOW** the training is supposed to happen.

```
args(lm)
help(lm)
?lm
linear_model <- lm(perimeter_worst ~ fractal_dimension_mean,</pre>
                    data = breast_cancer_data,
                    method = "qr")
```


Parameters vs hyperparameters in machine learning

In our **linear model**:

Coefficients were **found** during fitting.

method was an option to set **before** fitting.

In machine learning we might have:

- Weights and biases of neural nets that are optimized during training => model parameters.
- Options like learning rate, weight decay and number of trees in a Random Forest model that can be tweaked =>

hyperparameters.

Why tune hyperparameters?

- Fantasy football players ~ Hyperparameters
- Football players' positions ~ Hyperparameter values
- Finding the best combination of players and positions ~ Finding the best **combination** of hyperparameters

Let's practice!

Recap of machine learning basics

HYPERPARAMETER TUNING IN R

Dr. Shirin Elsinghorst Senior Data Scientist

R datacamp

Machine learning with caret - splitting data

```
# Load caret and set seed
library(caret)
set.seed(42)
```

```
# Create partition index
index <- createDataPartition(breast_cancer_data$diagnosis, p = .70,</pre>
                               list = FALSE
# Subset `breast_cancer_data` with index
bc_train_data <- breast_cancer_data[index, ]</pre>
bc_test_data <- breast_cancer_data[-index, ]</pre>
```

- Training set with enough **power**.
- **Representative** test set.

Train a machine learning model with caret

• Set up cross-validation:

```
library(caret)
library(tictoc)
fitControl <- trainControl(method = "repeatedcv", number = 3, repeats = 5)</pre>
```

• **Train** a Random Forest model:

```
tic()
set.seed(42)
rf_model <- train(diagnosis ~ ., data = bc_train_data, method = "rf", trControl = fitControl,</pre>
                   verbose = FALSE)
toc()
```

1.431 sec elapsed

Automatic hyperparameter tuning in caret

Random Forest

• • •

Resampling results across tuning parameters:

mtry	Accuracy	Карра
2	0.9006783	0.8015924
6	0.9126645	0.8253289
10	0.8999389	0.7999386

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 6.

Let's start modeling!

Hyperparameter tuning with caret

HYPERPARAMETER TUNING IN R

Dr. Shirin Elsinghorst Senior Data Scientist

Automatic hyperparameter tuning in caret

Random Forest

• • •

Resampling results across tuning parameters:

mtry	Accuracy	Карра
2	0.9006783	0.8015924
6	0.9126645	0.8253289
10	0.8999389	0.7999386

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 6.

Hyperparameters are specific to model algorithms

- modelLookup(model)
- https://topepo.github.io/caret/available-models.html

Show 237 🛊 entries

Available Models 6

The models below are available in train. The code behind these protocols can be obtained using the function getModelInfo or by going to the github repository.

			Search:	
Model	□ method Value □	Туре	Libraries	Tuning Parameters
AdaBoost Classification Trees	adaboost	Classification	fastAdaboost	nlter, method
AdaBoost.M1	AdaBoost.M1	Classification	adabag, plyr	mfinal, maxdepth, coeflearn
Adaptive Mixture Discriminant Analysis	amdai	Classification	adaptDA	model
Adaptive-	1			

Hyperparameters in Support Vector Machines (SVM)

fitControl <- trainControl(method = "repeatedcv", number = 3, repeats = 5)</pre>

```
tic()
svm_model <- train(diagnosis ~ .,</pre>
                    data = bc_train_data,
                    method = "svmPoly",
                    trControl = fitControl,
                    verbose= FALSE)
```

toc()

3.836 sec elapsed

Hyperparameters in Support Vector Machines (SVM)

svm_model

Support Vector Machines with Polynomial Kernel

• • •

Resampling results across tuning parameters:

degree	scale	С	Accuracy	Карра
1	0.100	1.00	0.9104803	0.8211459

Accuracy was used to select the optimal model using the largest value. The final values used for the model were degree = 1, scale = 0.1 and C = 1.

Defining hyperparameters for automatic tuning

• tuneLength

```
tic()
set.seed(42)
svm_model_2 <- train(diagnosis ~ .,</pre>
                      data = bc_train_data,
                      method = "svmPoly",
                      trControl = fitControl,
                      verbose = FALSE,
                      tuneLength = 5)
toc()
```

7.458 sec elapsed

Accuracy was used to select the optimal model using the largest value. The final values used for the model were degree = 1, scale = 1 and C = 1.

Manual hyperparameter tuning in caret

tuneGrid + expand.grid

toc()

0.691 sec elapsed

Manual hyperparameter tuning in caret

svm_model_3

Support Vector Machines with Polynomial Kernel • • • Карра Accuracy 0.7772947 0.554812 Tuning parameter 'degree' was held constant at a value of 4 Tuning parameter 'scale' was held constant at a value of 1 Tuning parameter 'C' was held constant at a value of 1

It's your turn! HYPERPARAMETER TUNING IN R

