Hyperparameter
tuning in caret

HYPERPARAMETER TUNING IN R

®

Dr. Shirin Elsinghorst

Senior Data Scientist

Voter dataset from US 2016 election

e Split intro training and test set

library(tidyverse)
glimpse(voters_train_data)

Observations: 6,692
Variables: 42
turnoutlé6_2016 "Did not vote", "Did not vote", "Did not vote", "Did not vote",
RIGGED_SYSTEM_1_2016 2 , 2, 3,
RIGGED_SYSTEM_2_2016 3
RIGGED_SYSTEM_3_2016 1
RIGGED_SYSTEM_4_2016 2,
1
1
2

RIGGED_SYSTEM_5_2016

RIGGED_SYSTEM_6_2016
track_2016

4

$
$
$
$
$
$
$
$

4
4

HYPERPARAMETER TUNING IN R

Let's train another model with caret
e Stochastic Gradient Boosting

library(caret)

library(tictoc)

fitControl <- trainControl(method = "repeatedcv", number = 3, repeats = 5)
tic()

set.seed(42)

gbm_model_voters <- train(turnoutl6_2016 ~ .,
data = voters_train_data,
method = "gbm",

trControl = fitControl,
verbose = FALSE)

toc()

32.934 sec elapsed

HYPERPARAMETER TUNING IN R

Let's train another model with caret

gbm_model_voters

Stochastic Gradient Boosting

Resampling results across tuning parameters:
interaction.depth n.trees Accuracy Kappa
1 50 0.9604603 -0.0001774346

Tuning parameter 'shrinkage' was held constant at a value of 0.1
Tuning parameter 'n.minobsinnode' was held constant at a value of 10

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were n.trees = 50,
interaction.depth = 1, shrinkage = 0.1 and n.minobsinnode

HYPERPARAMETER TUNING IN R

Cartesian grid search with caret
e Define a Cartesian grid of hyperparameters:

man_grid <- expand.grid(n.trees = c(100, 200, 250), interaction.depth = c(1, 4, 6),
shrinkage = 0.1, n.minobsinnode = 10)
fitControl <- trainControl(method = "repeatedcv", number = 3, repeats = 5)
tic()
set.seed(42)
gbm_model_voters_grid <- train(turnoutl6_2016 ~ .,
data = voters_train_data,
method = "gbm",
trControl = fitControl,
verbose = FALSE,
tuneGrid = man_grid)
toc ()

85.745 sec elapsed

HYPERPARAMETER TUNING IN R

Cartesian grid search with caret

gbm_model_voters_grid

Stochastic Gradient Boosting

Resampling results across tuning parameters:
interaction.depth n.trees Accuracy Kappa
1 100 0.9603108 0.000912769

Tuning parameter 'shrinkage' was held constant at a value of 0.1
Tuning parameter 'n.minobsinnode' was held constant at a value of 10

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were n.trees = 100,
interaction.depth = 1, shrinkage = 0.1 and n.minobsinnode = 10.

HYPERPARAMETER TUNING IN R

Plot hyperparameter models

plot(gbm_model_voters_grid) plot(gbm_model_voters_grid,
metric = "Kappa",

Max Tree Depth

- ; . plotType = "level")

0.060 -

E_ ’ 0035

=

-'I:'_E. |

% 0.95% — — - 0.030

=

o

[Fa)

=

O

= =

0 =%

E 8

& 0058 - =)

= [

& -

E z - 0.015
=

i

E 0.010

& 0.057 '

== - — il
0058 - l- _))) I
| | |
[T ¥ &
o i o = # Boosting lterations
Boosting Iterations Kappa (Repeated Cross-Validation)

HYPERPARAMETER TUNING IN R

Test it out for
yourself!

HYPERPARAMETER TUNING IN R

Grid vs. Random
Search

HYPERPARAMETER TUNING IN R

®

Dr. Shirin Elsinghorst

Senior Data Scientist

X datacamp

Grid search continued

man_grid <- expand.grid(n.trees = c(100, 200, 250), interaction.depth = c(1, 4, 6),
shrinkage = 0.1, n.minobsinnode = 10)
fitControl <- trainControl(method = "repeatedcv", number = 3,
repeats = 5, search = "grid")
tic()
set.seed(42)
gbm_model_voters_grid <- train(turnoutl6_2016 ~ .,
data = voters_train_data,
method = "gbm",
trControl = fitControl,
verbose= FALSE,
tuneGrid = man_grid)
toc()

85.745 sec elapsed

HYPERPARAMETER TUNING IN R

Grid search with hyperparameter ranges

big_grid <- expand.grid(n.trees = seq(from = 10, to = 300, by = 50),
interaction.depth = seq(from = 1, to = 10,
length.out = 6),
shrinkage = 0.1,
n.minobsinnode = 10)
big_grid

n.trees interaction.depth shrinkage n.minobsinnode
10 1.0 0.1 10

60 . . 10

10

10

10
10

10

HYPERPARAMETER TUNING IN R

Grid search with many hyperparameter options

big_grid <- expand.grid(n.trees = seq(from = 10, to = 300, by = 50),
interaction.depth = seq(from = 1, to = 10,
length.out = 6),
shrinkage = 0.1,
n.minobsinnode = 10)
fitControl <- trainControl(method = "repeatedcv", number = 3, repeats = 5, search = "grid")
tic()
set.seed(42)
gbm_model_voters_big_grid <- train(turnoutlé6_2016 ~ .,
data = voters_train_data,
method = "gbm",
trControl = fitControl,
verbose = FALSE,
tuneGrid = big_grid)

toc()

240.698 sec elapsed

HYPERPARAMETER TUNING IN R

Cartesian grid vs random search

ggplot(gbm_model_voters_big_grid) * Grid search can get slow and

computationally expensive very quickly!

e Therefore, in reality, we often use random

0.960- B\
\

sedarch.

Max Tree Depth

1.0

0.959 -

28
= 46
0.958 - N

8.2

10.0

o
©
N
~
1

Accuracy (Repeated Cross-Validation)

0.956 -

0 100 200
Boosting Iterations

HYPERPARAMETER TUNING IN R

Random search in caret

Define random search in trainControl function
library(caret)
fitControl <- trainControl(method = "repeatedcv", number = 3, repeats = 5, search = "random")

Set tunelLength argument
tic()
set.seed(42)
gbm_model_voters_random <- train(turnoutl6_2016 ~ .,
data = voters_train_data,
method = "gbm",
trControl = fitControl,
verbose = FALSE,
tuneLength = 5)
toc()

46.432 sec elapsed

HYPERPARAMETER TUNING IN R

Random search in caret

gbm_model_voters_random

Stochastic Gradient Boosting

Resampling results across tuning parameters:

shrinkage interaction.depth
0.08841129 4
0.09255042 2
0.14484962 3
0.34935098 10
0.43341085 1

n.

21
10
13

minobsinnode n.trees
4396
540
3154
2566
2094

Accuracy

0.9670737
0.9630635
0.9570179
0.9610734
0.9460727

Kappa

-0.008533125
-0.013291683
-0.013970255
-0.015726813
-0.024791056

Accuracy was used to select the optimal model using the largest valvue.

The final values used for the model were n.trees = 4396,
0.08841129 and n.minobsinnode =

interaction.depth = 4, shrinkage

e Beware:in caret random search can NOT be combined with grid search!

HYPERPARAMETER TUNING IN R

Let's get coding!

HYPERPARAMETER TUNING IN R

Adaptive resampling

HYPERPARAMETER TUNING IN R

®

Dr. Shirin Elsinghorst

Senior Data Scientist

X datacamp

What is Adaptive Resampling?

Grid Search

e All hyperparameter combinations are
computed.

Random Search

e Random subsets of hyperparameter
combinations are computed.

- Evaluation of best combination is done at
the end.

Adaptive Resampling

e Hyperparameter combinations are
resampled with values near combinations
that performed well.

 Adaptive Resampling is, therefore, faster
and more efficient!

"Futility Analysis in the Cross-Validation of
Machine Learning Models.”" Max Kuhn; ARXIV
2014

HYPERPARAMETER TUNING IN R

https://arxiv.org/abs/1405.6974

Adaptive resampling in caret

trainControl : method = "adaptive_cv" + search = "random" + adaptive =

e min: minimum number of resamples per hyperparameter
e alpha: confidence level for removing hyperparameters
e method: "gls" for linear model or "BT" for Bradley-Terry

e complete: if TRUE generates full resampling set

fitControl <- trainControl(method = "adaptive_cv",

adaptive = list(min = 2, alpha = 0.05,

method =
search = "random")

"gls", complete = TRUE),

HYPERPARAMETER TUNING IN R

e trainControl() + tunelLength = x

fitControl <- trainControl(method = "adaptive_cv", number = 3,
adaptive = list(min = 2,
alpha = 0.05,
method = "gls",
complete = TRUE),
"random")

search
tic()
set.seed(42)
gbm_model_voters_adaptive <- train(turnoutlé6_2016 ~ .,
data = voters_train_data,
method = "gbm",
trControl = fitControl,
verbose = FALSE,
tuneLength = 7)
toc()

repeats

3,

1239.837 sec elapsed

HYPERPARAMETER TUNING IN R

Adaptive resampling

gbm_model_voters_adaptive

Resampling results across tuning parameters:
shrinkage interaction.depth n.minobsinnode n.trees Accuracy Kappa Resamples
.07137493 5 6 4152 0.9564654 .02856571
.08408739 5 14 674 .9547185 .02098853
.28552325 8 15 3209 .9568141 .03024238

.54251480 3 24 3683 .9482171 .03568586

.56406870 7 25 4685 .9549898 .05284333

0.58695763 8 24 1431 0.9520286 .02742592
Accuracy was used to select the optimal model using the largest valvue.

0
0
. 33663932 10 13 2595 0.9571130 .04250979
0
0

The final values used for the model were n.trees = 2595,
interaction.depth = 10, shrinkage = 0.3366393 and n.minobsinnode = 13.

HYPERPARAMETER TUNING IN R

Let's get coding!

HYPERPARAMETER TUNING IN R

