Hypothesis test for a proportion INFERENCE FOR CATEGORICAL DATA IN R

Andrew Bray Assistant Professor of Statistics at Reed College

Do half of Americans favor capital punishment?

Do half of Americans favor capital punishment?

null	<- gss2016 %>%				
specify(
response = cappun,					
:	success = "FAVOR"				
) 🤉	%>%				

```
hypothesize(
 null = "point",
  p = 0.5
) %>%
```

generate(reps = 500, type = "simulate") %>%

datacamp

calculate(stat = "prop")

A	t	ibble:	500)	Х	2	
	ľ	replic	cate		st	at	
	<	<fct></fct>		<	dt) l>	•
1	-	1		0).2	í8	
2		2		ŀ).2	47	7
3	-	3		ŀ).2	í8	
4	4	4		0).2	í4	
5	ļ	5		0).2	í07	7
6	(5		0).5	52	
7		7		0).2	i13	5
8	8	3		0).5	553	5
9	(9		0).5	52	
10	-	10		C).2	í67	7
#		with	490	n	or	e	rows

Do half of Americans favor capital punishment?

```
ggplot(null, aes(x = stat)) +
  geom_density() +
  geom_vline(
    xintercept = p_hat,
    color = "red"
```

```
null %>%
 summarize(mean(stat > p_hat)) %>%
 pull() * 2
```


Hypothesis test

- Null hypothesis: theory about the state of the world. \bullet
- Null distribution: distribution of test statistics assuming null is true.
- p-value: a measure of consistency between null hypothesis and your observations.
 - high p-value: consistent (p-val > alpha) 0
 - low p-value: inconsistent (p-val < alpha) 0

Let's practice! INFERENCE FOR CATEGORICAL DATA IN R

Intervals for differences

INFERENCE FOR CATEGORICAL DATA IN R

Andrew Bray Assistant Professor of Statistics at Reed College

A question in two variables

Do women and men believe at different rates?

Let p be the proportion that believe in life after death.

- $H_0: p_{female} p_{male} = 0$
- $H_A: p_{female} p_{male} \neq 0$

ggplot(gss2016, aes(x = sex, fill = postlife)) +
 geom_bar()

ggplot(gss2016, aes(x = sex, fill = postlife)) + geom_bar(position = "fill")


```
p_hats <- gss2016 %>%
group_by(sex) %>%
summarize(mean(postlife == "YES", na.rm = TRUE)) %>%
pull()
```

```
d_hat <- diff(p_hats)
d_hat</pre>
```

0.1472851

Generating data from HO

- $H_0: p_{female} p_{male} = 0$
- There is no association between belief in the afterlife and the sex of a subject.
- The variable postlife is independent from the variable sex .
- \Rightarrow Generate data by permutation


```
gss2016 %>%
 specify(
   response = postlife,
    explanatory = sex,
    success = "YES"
 ) %>%
 hypothesize(null = "independence") %>%
 generate(reps = 1, type = "permute")
```



```
qss2016 %>%
  specify(
    postlife ~ sex, # this line is new
    success = "YES"
  ) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1, type = "permute")
```

Response: postlife (factor)						
Explanatory: sex (factor)						
Null Hypothesis: independen						
<pre># A tibble:</pre>	137 x 3					
# Groups:	replicate [1]					
postlife	sex replicate					
<fct></fct>	<fct> <int></int></fct>					
1 YES	FEMALE 1					
2 YES	MALE 1					
3 YES	FEMALE 1					
4 YES	MALE 1					
5 YES	MALE 1					
6 YES	FEMALE 1					
7 NO	FEMALE 1					

се

```
qss2016 %>%
  specify(
    postlife ~ sex,
    success = "YES"
  ) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1, type = "permute")
```

Response: postlife (factor)						
Explanatory: sex (factor)						
Null Hypothesis: independen						
137 x 3						
replicate [1]						
sex replicate						
<fct> <int></int></fct>						
FEMALE 1						
MALE 1						
FEMALE 1						
MALE 1						
MALE 1						
FEMALE 1						
FEMALE 1						

се

gss2016 %>%

specify(postlife ~ sex, success = "YES") %>% hypothesize(null = "independence") %>% generate(reps = 500, type = "permute") %>% calculate(stat = "diff in props", order = c("FEMALE", "MALE"))

Warning message: Removed 13 rows containing missing values.


```
ggplot(null, aes(x = stat)) +
  geom_density() +
  geom_vline(xintercept = d_hat, color = "red")
```

These data suggest that there is a difference between sexes in the belief of life after death.

Let's practice! INFERENCE FOR CATEGORICAL DATA IN R

INFERENCE FOR CATEGORICAL DATA IN R

Andrew Bray Assistant Professor of Statistics at Reed College

Truth

Truth

Truth

Truth

Truth

What is the probability that you will reject a true null hypothesis?

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

Truth

What is the probability that you will reject a true null hypothesis?

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

tacamp

What is the probability that you will reject a true null hypothesis?

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

What is the probability that you will reject a true null hypothesis?

tacamp

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

tacamp

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

datacamp

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

INFERENCE FOR CATEGORICAL DATA IN R

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

INFERENCE FOR CATEGORICAL DATA IN R

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

INFERENCE FOR CATEGORICAL DATA IN R

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

What is the probability that you will fail to reject a false null hypothesis?

INFERENCE FOR CATEGORICAL DATA IN R

tacamp

Truth

 $\mathrm{H}_0: p_1-p_2=0$ $\mathrm{H}_A: p_1-p_2
eq 0$

What is the probability that you will fail to reject a false null hypothesis?

tacamp

INFERENCE FOR CATEGORICAL DATA IN R

6

Truth

What is the probability that you will fail to reject a false null hypothesis?

tacamp

Truth

What is the probability that you will fail to reject a false null hypothesis?

tacamp

Truth

What is the probability that you will fail to reject a false null hypothesis?

tacamp

eta

Let's practice! INFERENCE FOR CATEGORICAL DATA IN R

