Hypothesis testing for comparing two means via simulation

INFERENCE FOR NUMERICAL DATA IN R

Mine Cetinkaya-Rundel

Associate Professor of the Practice, Duke University

Motivation

- Motivating question: Does a treatment \bullet using embryonic stem cells help improve heart function following a heart attack more so than traditional therapy?
- Data: stem.cell data from the openintro package

library(openintro) data(stem.cell)

trmt	before
ctrl	35.25
ctrl	36.50
ctrl	39.75
• • •	• • •
esc	53.75
	trmt ctrl ctrl ctrl esc

- 29.50 29.50 36.25 51.00
- after

Analysis outline

Step 1. Calculate change for each sheep: difference between before and after heart pumping capacities for each sheep.

	trmt	before	after	change
1	ctrl	35.25	29.50	?
2	ctrl	36.50	29.50	?
3	ctrl	39.75	36.25	?
	• • •	• • •	• • •	
n	esc	53.75	51.00	?

Analysis outline

Step 2. Set the hypotheses:

 $H_0: \mu_{esc} = \mu_{ctrl}$; There is no difference between average change in treatment and control groups.

 $H_A: \mu_{esc} > \mu_{ctrl}$; There is a difference between average change in treatment and control groups.

Analysis outline

Step 3. Conduct the hypothesis test.

- Write the values of change on 18 index cards.
- (1) Shuffle the cards and randomly split them into two equal sized decks: treatment and control.
- (2) Calculate and record the test statistic: difference in average change between treatment and control.
- Repeat (1) and (2) many times to generate the sampling distribution.
- Calculate p-value as the percentage of simulations where the test statistic is at least as extreme as the observed difference in sample means.

Use the infer package to conduct the test:

library(infer)

Start with the data frame and **specify** the model:

library(infer)

diff_ht_mean <- stem.cell %>% specify(__) %>% # y ~ x

• • •

Declare null hypothesis, i.e. no difference between means:

library(infer)

diff_ht_mean <- stem.cell %>% specify(__) %>% hypothesize(null = __) %>% # "independence" or "point"

y ~ x

• • •

Generate resamples assuming H_0 is true:

library(infer)

diff_ht_mean <- stem.cell %>% specify(__) %>% # y ~ x hypothesize(null = __) %>% # "independence" or "point" generate(reps = __, type = __) %>% # "bootstrap", "permute", or "simulate" • • •

Calculate test statistic:

library(infer)

diff_ht_mean <- stem.cell %>% specify(__) %>% # y ~ x hypothesize(null = __) %>% # "independence" or "point" generate(reps = _N_, type = __) %>%# "bootstrap", "permute", or "simulate" calculate(stat = "diff in means") # type of statistic to calculate

Hypothesis test: calculate p-value

Calculate the p-value as the proportion of simulations where the simulated difference between the sample means is at least as extreme as the observed

$$P((ar{x}_{esc,sim} - ar{x}_{ctrl,sim}) \geq (ar{x}_{esc,obs} - ar{x}_{ctrl,obs}))$$

Let's practice! INFERENCE FOR NUMERICAL DATA IN R

Bootstrap Cl for difference in two means

INFERENCE FOR NUMERICAL DATA IN R

Mine Cetinkaya-Rundel

Associate Professor of the Practice, Duke University

Bootstrap CI for a difference

- Take a bootstrap sample of each sample a random sample taken with replacement from 1. each of the original samples, of the same size as each of the original samples.
- 2. Calculate the bootstrap statistic a statistic such as *difference* in means, medians, proportion, etc. computed based on the bootstrap samples.
- 3. Repeat steps (1) and (2) many times to create a bootstrap distribution a distribution of bootstrap statistics.
- Calculate the interval using the percentile or the standard error method. 4.

Let's practice! INFERENCE FOR NUMERICAL DATA IN R

Comparing means with a t-test

INFERENCE FOR NUMERICAL DATA IN R

Mine Cetinkaya-Rundel

Associate Professor of the Practice, Duke University

A (more) standard measure of pay

Instead of comparing average annual income, compare average hrly_rate:

- assume 52 weeks in a year
- hrly_rate = income / (hrs_work * 52)

Research question and hypotheses

Do the data provide convincing evidence of a difference between the average hourly rate of citizens and non-citizens in the US?

Let μ = average hourly pay

 $H_0: \mu_{citizen} = \mu_{non-citizen}$

 $H_A: \mu_{citizen} \neq \mu_{non-citizen}$

Summary statistics

```
acs12 %>%
  filter(!is.na(hrly_rate)) %>%
  group_by(citizen) %>%
  summarise(x_bar = round(mean(hrly_rate), 2),
            s = round(sd(hrly_rate), 2),
            n = length(hrly_rate))
```

	citizen	x_bar	S	n
1	no	21.19	34.50	58
2	yes	18.52	24.73	901

Conducting the test

t.test(hrly_rate ~ citizen, data = acs12, null = 0, alternative = "two.sided")

- Null:
 - $\circ H_0: \mu_{citizen} = \mu_{non-citizen}$
 - $H_0: \mu_{citizen} \mu_{non-citizen} = 0
 ightarrow$ null = 0
- $H_A: \mu_{citizen}
 eq \mu_{non-citizen}
 ightarrow$ alternative = "two.sided"

Conducting the test

Conditions

- Independence:
 - Observations in each sample should be independent of each other.
 - The two samples should be independent of each other.
- Sample size / skew: The more skewed the original data, the higher the sample size required to have a symmetric sampling distribution.

Let's practice! INFERENCE FOR NUMERICAL DATA IN R

