
Introduction to
Programming with

purrr
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

$whoami

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Discovering purrr
R for Data Science
H. Wickham & G. Grolemund

purrr Tutorial
J. Bryan

A purrr tutorial - useR! 2017
C. Wickham

Happy dev with {purrr}
C. Fay

Foundations of Functional Programming
with purrr

http://r4ds.had.co.nz/iteration.html#the-map-functions
https://jennybc.github.io/purrr-tutorial/
https://github.com/cwickham/purrr-tutorial
https://colinfay.me/happy-dev-purrr/
https://learn.datacamp.com/courses/foundations-of-functional-programming-with-purrr

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

What will this course cover?

From: Charlotte Wickham — A introduction to purrr

https://github.com/cwickham/purrr-tutorial

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

purrr basics - a refresher (Part 1)
map(.x, .f, ...)

for each element of .x

do .f(.x, ...)

return a list

res <- map(visit_2015, sum)
class(res)

"list"

map_dbl(.x, .f, ...)

for each element of .x

do .f(.x, ...)

return a numeric vector

res <- map_dbl(visit_2015, sum)
class(res)

"numeric"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

purrr basics - a refresher (Part 2)
map2(.x, .y, .f, ...)

for each element of .x and .y

do .f(.x, .y, ...)

return a list

res <- map2(visit_2015,
 visit_2016,
 sum)
class(res)

"list"

map2_dbl(.x, .f, ...)

for each element of .x and .y

do .f(.x, .y, ...)

return a numeric vector

res <- map2_dbl(visit_2015,
 visit_2016,
 sum)
class(res)

"numeric"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

purrr basics - a refresher (Part 3)
pmap(.l, .f, ...)

for each sublist of .l

do f(..1, ..2, ..3, [etc], ...)

return a list

l <- list(visit_2014,
 visit_2015,
 visit_2016)
res <- pmap(l, sum)
class(res)

"list"

pmap_dbl(.l, .f, ...)

for each sublist of .l

do f(..1, ..2, ..3, [etc], ...)

return a numeric vector

l <- list(visit_2014,
 visit_2015,
 visit_2016)
res <- pmap_dbl(l, sum)
class(res)

"numeric"

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Introduction to
mappers

INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

.f in purrr
A function:

for each elements of .x

do .f(.x, ...)

A number n:

for each elements of .x

do .x[n]

A character vector z

for each elements of .x

do .x[z]

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

.f as a function
When a function, .f can be either:

A classical function

my_fun <- function(x) {
 round(mean(x))
}
map_dbl(visit_2014, my_fun)

 [1] 5526 6546 6097 7760
 [5] 7025 7162 10484 8256
 [9] 6558 7686 5723 5053

A lambda (or anonymous) function

map_dbl(visit_2014, function(x) {
 round(mean(x))
})

 [1] 5526 6546 6097 7760
 [5] 7025 7162 10484 8256
 [9] 6558 7686 5723 5053

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Mappers: part 1
mapper: anonymous function with a one-sided formula

With one parameter
map_dbl(visits2017, ~ round(mean(.x)))

Is equivalent to
map_dbl(visits2017, ~ round(mean(.)))

Is equivalent to
map_dbl(visits2017, ~ round(mean(..1)))

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Mappers: part 2
mapper: anonymous function with a one-sided formula

With two parameters
map2(visits2016, visits2017, ~ .x + .y)

Is equivalent to
map2(visits2016, visits2017, ~ ..1 + ..2)

With more than two parameters
pmap(list, ~ ..1 + ..2 + ..3)

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

as_mapper()
as_mapper() : create mapper objects from a lambda function

Classical function
round_mean <- function(x){
 round(mean(x))
}

As a mapper
round_mean <- as_mapper(~ round(mean(.x))))

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Why mappers?
Mappers are:

Concise

Easy to read

Reusable

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Using mappers to
clean up your data

INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Setting the name of your objects
set_names() : sets the names of an unnamed list

names(visits2016)
length(visits2016)
month.abb

NULL
12
"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

visits2016 <- set_names(visits2016, month.abb)
names(visits2016)

"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Setting names with map() :

all_visits <- list(visits2015, visits2016, visits2017)
named_all_visits <- map(all_visits, ~ set_names(.x, month.abb))
names(named_all_visits[[1]])

"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

names(named_all_visits[[2]])

"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

names(named_all_visits[[3]])

"Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

keep()
keep() : extract elements that satisfy a condition

Which month has received more than 30000 visits?
over_30000 <- keep(visits2016, ~ sum(.x) > 30000)
names(over_30000)

"Jan" "Mar" "Apr" "May" "Jul" "Aug" "Oct" "Nov"

limit <- as_mapper(~ sum(.x) > 30000)
Which month has received more than 30000 visits?
over_mapper <- keep(visits2016, limit)
names(over_mapper)

"Jan" "Mar" "Apr" "May" "Jul" "Aug" "Oct" "Nov"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

discard()
discard() : remove elements that satisfy a condition

Which month has received less than 30000 visits?
under_30000 <- discard(visits2016, ~ sum(.x) > 30000)
names(under_30000)

"Feb" "Jun" "Sep" "Dec"

limit <- as_mapper(~ sum(.x) > 30000)
Which month has received less than 30000 visits?
under_mapper <- discard(visits2016, limit)
names(under_mapper)

"Feb" "Jun" "Sep" "Dec"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

keep(), discard(), and map()
Using map() & keep() :

df_list <- list(iris, airquality) %>% map(head)
map(df_list, ~ keep(.x, is.factor))

[[1]]
 Species
1 setosa
2 setosa
3 setosa
4 setosa
5 setosa
6 setosa

[[2]]
data frame with 0 columns and 6 rows

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Predicates
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

What is a predicate?
Predicates: return TRUE or FALSE

Test for conditions

Exist in base R: is.numeric() , %in% , is.character() , etc.

is.numeric(10)

TRUE

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

What is a predicate functional?
Predicate functionals:

Take an element & a predicate

Use the predicate on the element

keep(airquality, is.numeric)

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

every() : does every element satisfy a condition?

Are all elements of visits2016 numeric?
every(visits2016, is.numeric)
Is the mean of every months above 1000?
every(visits2016, ~ mean(.x) > 1000)

TRUE
FALSE

some() : do some elements satisfy a condition?

Is the mean of some months above 1000?
some(visits2016, ~ mean(.x) > 1000)

TRUE

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

detect_index()
Which is the first element with a mean above 1000?
detect_index(visits2016, ~ mean(.x) > 1000)

1

Which is the last element with a mean above 1000?
detect_index(visits2016, ~ mean(.x) > 1000, .right = TRUE)

11

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

has_element() and detect()
What is the value of the first element with a mean above 1000?
detect(visits2016, ~ mean(.x) > 1000, .right = TRUE)

[1] 1289 782 1432 1171 1094 1015 582 946 1191 1393 1307 1125 1267 1345 1066 810 583
[18] 733 795 766 873 656 1018 645 949 938 1118 1106 1134 1126

Does one month has a mean of 981?
visits2016_mean <- map(visits2016, mean)
has_element(visits2016_mean,981)

TRUE

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

