
Functional
programming in R

INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

About computation in R
"To understand computations in R, two slogans are helpful:

- Everything that exists is an object.

- Everything that happens is a function call." -John Chambers

class(`+`)

"function"

class(`<-`)

"function"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

R as a functional programming language
Functions can be

manipulated

stored in a variable

lambda

stored in a list

arguments of a function

returned by a function

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

About "pure functions"
In a pure function:

output only depends on input

no "side-effect"

Output depends only on inputs
No side effect
sum(1:10)

55

mean(1:100)

50.5

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Impure functions are useful
Impure functions:

Depend on environment

Have "side-effects"

Outputs depends of environment
Sys.Date()

"2018-10-04"

Side effect only
write.csv(iris, "iris.csv")

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Read more about functional programming
Advanced R, Functional programming, H. Wickham

Functional Programming in R, T. Mailund

https://adv-r.hadley.nz/fp.html
https://www.apress.com/de/book/9781484227459

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Tools for functional
programming in

purrr
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

High order functions
A high order function can:

Take one or more functions as arguments

Return a function

nop_na <- function(fun){
 function(...){
 fun(..., na.rm = TRUE)
 }
}
sd_no_na <- nop_na(sd)
sd_no_na(c(NA, 1, 2, NA))

0.7071068

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Three types of high order functions
Functionals

Function factories

Function operators

Advanced R, Functional Programming

https://adv-r.hadley.nz/fp.html

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Adverbs in purrr
Handling errors and warnings:

possibly()

safely()

library(purrr)
safe_mean <- safely(mean)
class(safe_mean)

"function"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Use safely() to handle error.
safely() returns a function that will return:

$result

$error

safe_log <- safely(log)
safe_log("a")
$result

NULL

$error

<simpleError in log(x = x, base = base): non-numeric argument to mathematical function>

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

map(list(2, "a"), log)

Error in log(x = x, base = base) : non-numeric argument to mathematical function

map(list(2, "a"), safely(log))

[[1]]
[[1]]$result
[1] 0.6931472

[[1]]$error
NULL

[[2]]
[[2]]$result
NULL

[[2]]$error
<simpleError in log(x = x, base = base):non-numeric argument to mathematical function>

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Extracting elements from `safely()` results
map() & "result" or "error"

safe_log <- safely(log)

map(list("a", 2), safe_log) %>%
 map("result")

[[1]]
NULL

[[2]]
[1] 0.6931472

safe_log <- safely(log)

map(list("a", 2), safe_log) %>%
 map("error")

[[1]]
<simpleError in log(x = x,
base = base): non-numeric argument
to mathematical function>

[[2]]
NULL

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

possibly()
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

About possibly()
`possibly() creates a function that returns either:

the result

the value of otherwise

library(purrr)
possible_sum <- possibly(sum, otherwise = "nop")
possible_sum(1)
possible_sum("a")

0
"nop"

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Using possibly()
possibly() can return:

A logical

ps <- possibly(sum, FALSE)
ps("a")

FALSE

A NA

ps <- possibly(sum, NA)
ps("a")

NA

A character

ps <- possibly(sum, "nope")
ps("a")

"nope"

A number

ps <- possibly(sum, 0)
ps("a")

0

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Handling adverb
results

INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

Colin Fay
Data Scientist & R Hacker at ThinkR

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

Cleaning safely results
Transform the result with transpose() :

Transpose turn a list of n elements a and b
to a list of a and b, with each n elements
l <- list("a", 2, 3)
map(l, safe_log) %>% length()

3

map(l, safe_log) %>% transpose() %>% length()

2

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

About compact()
compact() removes the NULL :

list(1, NULL, 3, 4, NULL) %>%
 compact()

[[1]]
[1] 1

[[2]]
[1] 3

[[3]]
[1] 4

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

possibly() and compact()
otherwise = NULL %>% compact() :

l <- list(1,2,3,"a")
possible_log <- possibly(log, otherwise = NULL)
map(l, possible_log) %>% compact()

[[1]]
[1] 0

[[2]]
[1] 0.6931472

[[3]]
[1] 1.098612

INTERMEDIATE FUNCTIONAL PROGRAMMING WITH PURRR

A Gentle introduction to httr
httr: a friendly http package for R
H. Wickham

Getting started with httr
H. Wickham

Working with Web Data in R

http://httr.r-lib.org/
https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html
https://learn.datacamp.com/courses/working-with-web-data-in-r

Let's practice!
INTERMEDIATE FUNCT IONAL PROGRAMMING WITH PURRR

