Models for each category INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

4 categories

unique(fish\$species)

"Bream" "Roach" "Perch" "Pike"

Splitting the dataset The smart way

- base-R: split() + lapply()
- dplyr : nest_by() + mutate()

The simple way

bream <- fish %>% filter(species == "Bream") perch <- fish %>% filter(species == "Perch") pike <- fish %>% filter(species == "Pike") roach <- fish %>% filter(species == "Roach")

4 models

mdl_bream <- lm(mass_g ~ length_cm, data = bream)	<pre>mdl_pike <- lm(mass_g ~ length_</pre>
Call:	Call:
lm(formula = mass_g ~ length_cm, data = bream)	lm(formula = mass_g ~ length_cn
Coefficients:	Coefficients:
(Intercept) length_cm	(Intercept) length_cm
-1035.35 54.55	-1540.82 53.19
<pre>mdl_perch <- lm(mass_g ~ length_cm, data = perch)</pre>	mdl_roach <- lm(mass_g ~ length
Call:	Call:
lm(formula = mass_g ~ length_cm, data = perch)	lm(formula = mass_g ~ length_cm
Coefficients:	Coefficients:
(Intercept) length_cm	(Intercept) length_cm
-619.18 38.91	-329.38 23.32

h_cm, data = pike)

cm, data = pike)

th_cm, data = roach)

cm, data = roach)

Explanatory data

```
explanatory_data <- tibble(</pre>
  length_cm = seq(5, 60, 5)
)
```


Making predictions

```
prediction_data_bream <- explanatory_data %>%
  mutate(
   mass_g = predict(mdl_bream, explanatory_data),
   species = "Bream"
```

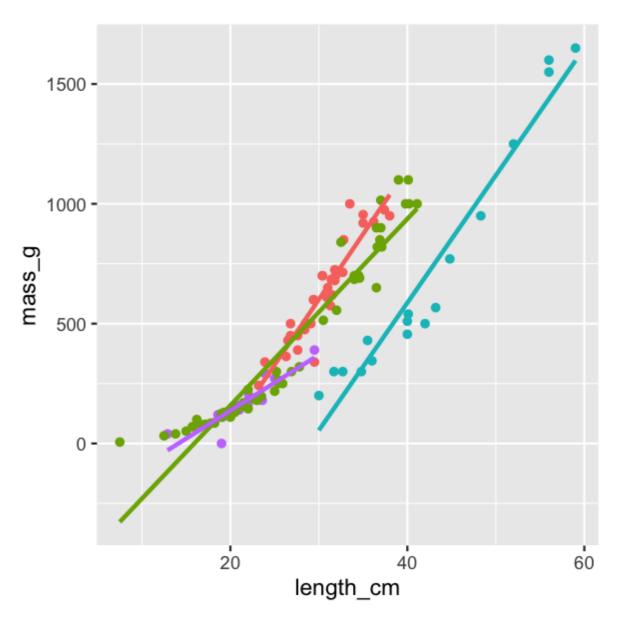
```
prediction_data_pike <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_perch, explanatory_data),
    species = "Perch"
```

```
prediction_data_perch <- explanatory_data %>%
  mutate(
   mass_g = predict(mdl_pike, explanatory_data),
   species = "Pike"
```

```
prediction_data_roach <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_roach, explanatory_data),
    species = "Roach"
```


Visualizing predictions

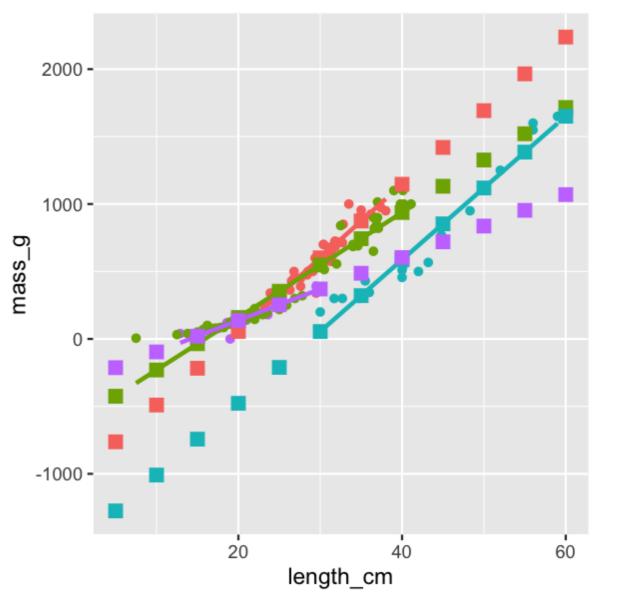
ggplot(fish, aes(length_cm, mass_g, color = species)) + geom_point() + geom_smooth(method = "lm", se = FALSE)



Adding in your predictions

```
ggplot(fish,aes(length_cm, mass_g, color = species)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 geom_point(data = prediction_data_bream, size = 3, shape = 15) +
 geom_point(data = prediction_data_perch, size = 3, shape = 15) +
 geom_point(data = prediction_data_pike, size = 3, shape = 15) +
 geom_point(data = prediction_data_roach, size = 3, shape = 15)
```

tacamp



species

Coefficient of determination

Residual standard error

Let's practice!

One model with an interaction

INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

What is an interaction?

In the fish dataset

The effect of length on the expected mass is different for different species.

More generally

The effect of one explanatory variable on the expected response changes depending on the value of another explanatory variable.

Specifying interactions

No interactions

response ~ explntry1 + explntry2

With interactions (implicit)

response_var ~ explntry1 * explntry2

With interactions (explicit)

response ~ explntry1 + explntry2 + explntry1:explntry2

No interactions

mass_g ~ length_cm + species

With interactions (implicit)

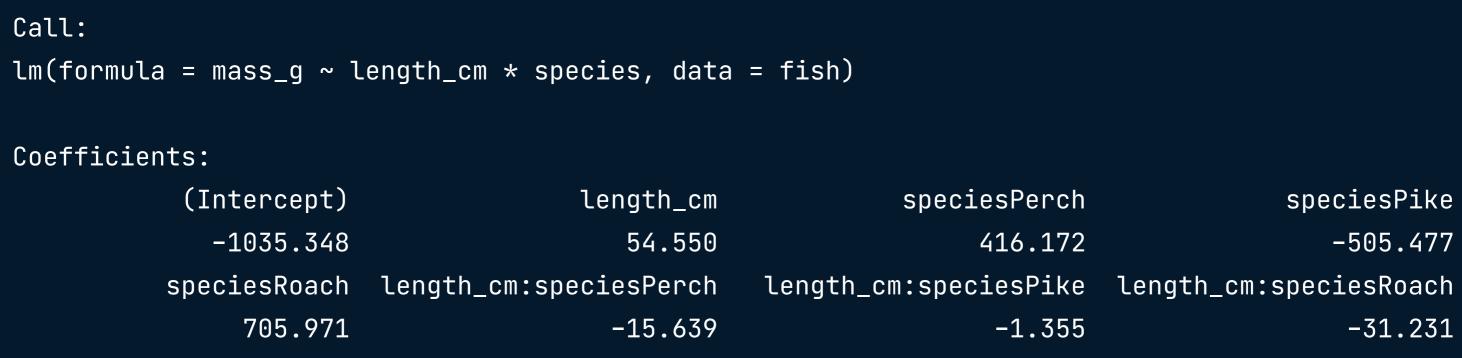
mass_g ~ length_cm * species

With interactions (explicit)

mass_g ~ length_cm + species + length_cm:species

Running the model

lm(mass_g ~ length_cm * species, data = fish)



speciesPike -505.477-31.231

Easier to understand coefficients

mdl_inter <- lm(mass_g ~ species + species:length_cm + 0, data = fish)</pre>

-329.3823.32

Familiar numbers

speciesBream	speciesPerch	speciesPike	
-1035.35	-619.18	-1540.82	
<pre>speciesBream:length_cm</pre>	<pre>speciesPerch:length_cm</pre>	<pre>speciesPike:length_cm</pre>	spe
54.55	38.91	53.19	

coefficients(mdl_bream)

(Intercept)	length_cm	
-1035.34757	54.54998	

speciesRoach -329.38 beciesRoach:length_cm 23.32

Let's practice!

Making predictions with interactions

INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

The model with the interaction

mdl_mass_vs_both_inter <- lm(mass_g ~ species + species:length_cm + 0, data = fish)</pre>



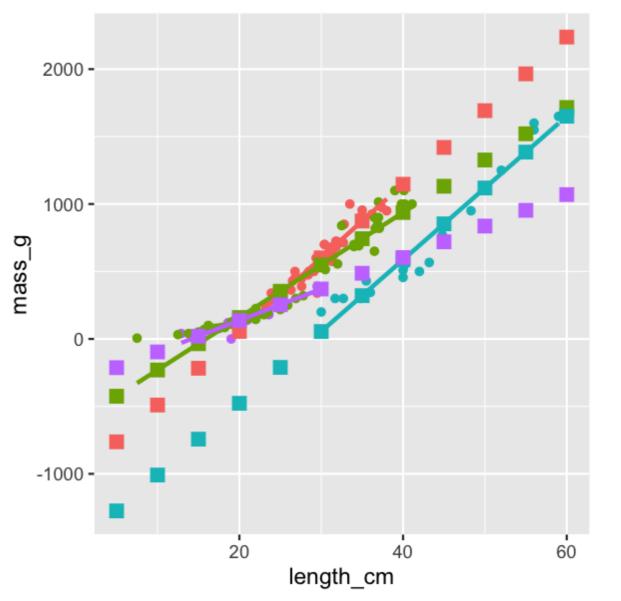
speciesPike speciesRoach -329.3823.32

The prediction flow, again

```
library(dplyr)
library(tidyr)
explanatory_data <- expand_grid(</pre>
  length_cm = seq(5, 60, 5),
  species = unique(fish$species)
prediction_data <- explanatory_data %>%
  mutate(mass_g = predict(mdl_mass_vs_both_inter, explanatory_data))
```


Visualizing the predictions

```
ggplot(fish, aes(length_cm, mass_g, color = species)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(data = prediction_data, size = 3, shape = 15)
```



species

coeffs <- coefficients(mdl_mass_vs_both_inter)</pre>

speciesBream	speciesPerch	speciesPike	
-1035.34757	-619.17511	-1540.82427	
<pre>speciesBream:length_cm</pre>	<pre>speciesPerch:length_cm</pre>	<pre>speciesPike:length_cm species</pre>	ie
54.54998	38.91147	53.19487	

intercept_bream <- coeffs[1]
<pre>intercept_perch <- coeffs[2]</pre>
<pre>intercept_pike <- coeffs[3]</pre>
<pre>intercept_roach <- coeffs[4]</pre>

slope_bream <- coeffs[5]</pre> slope_perch <- coeffs[6]</pre> slope_pike <- coeffs[7]</pre> slope_roach <- coeffs[8]</pre>

speciesRoach -329.37621 .esRoach:length_cm 23.31926

```
explanatory_data %>%
  mutate(
    mass_g = case_when(
```



```
explanatory_data %>%
  mutate(
    mass_g = case_when(
      species == "Bream" ~
```



```
explanatory_data %>%
  mutate(
    mass_g = case_when(
      species == "Bream" ~ intercept_bream + slope_bream * length_cm
```



```
explanatory_data %>%
 mutate(
   mass_g = case_when(
      species == "Bream" ~ intercept_bream + slope_bream * length_cm,
      species == "Perch" ~ intercept_perch + slope_perch * length_cm,
      species == "Pike" ~ intercept_pike + slope_pike * length_cm,
      species == "Roach" ~ intercept_roach + slope_roach * length_cm
```


Let's practice!

Simpson's Paradox

INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

A most ingenious paradox!

Simpson's Paradox occurs when the trend of a model on the whole dataset is very different from the trends shown by models on subsets of the dataset.

trend = slope coefficient

Synthetic Simpson data

X	y	group
62.24344	70.60840	D
52.33499	14.70577	В
56.36795	46.39554	С
66.80395	66.17487	D
66.53605	89.24658	E
62.38129	91.45260	E

• 5 groups of data, labeled "A" to "E"

¹ https://www.rdocumentation.org/packages/datasauRus/topics/simpsons_paradox

Linear regressions Whole dataset

```
mdl_whole <- lm(</pre>
  y ∼ x,
  data = simpsons_paradox
coefficients(mdl_whole)
```

(Intercept)	X	
-38.554	1.751	

By group

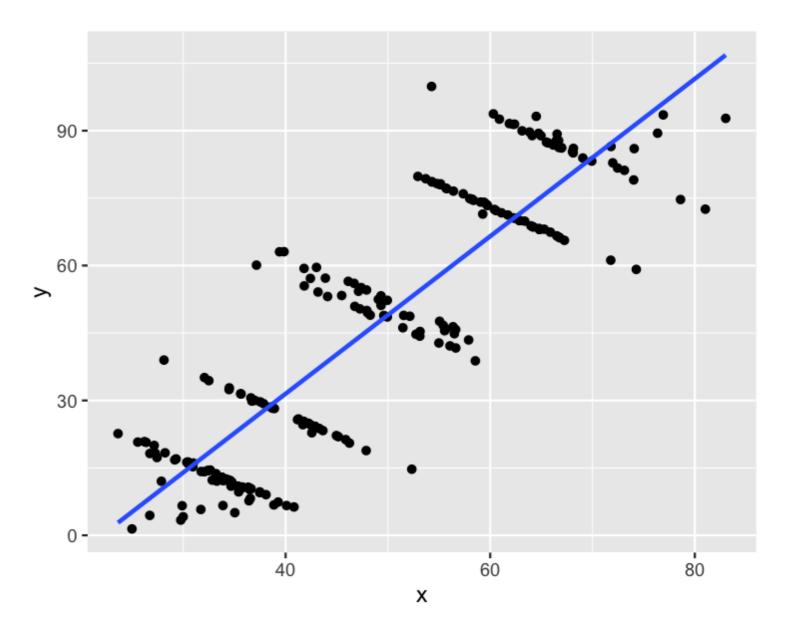
```
mdl_by_group <- lm(</pre>
  y ~ group + group:x + 0,
  data = simpsons_paradox
coefficients(mdl_by_group)
```

groupA	groupB	groupC	groupD	groupE	
32.5051	67.3886	99.6333	132.3932	123.8242	
groupA:x	groupB:x	groupC:x	groupD:x	groupE:x	
-0.6266	-1.0105	-0.9940	-0.9908	-0.5364	

	_	

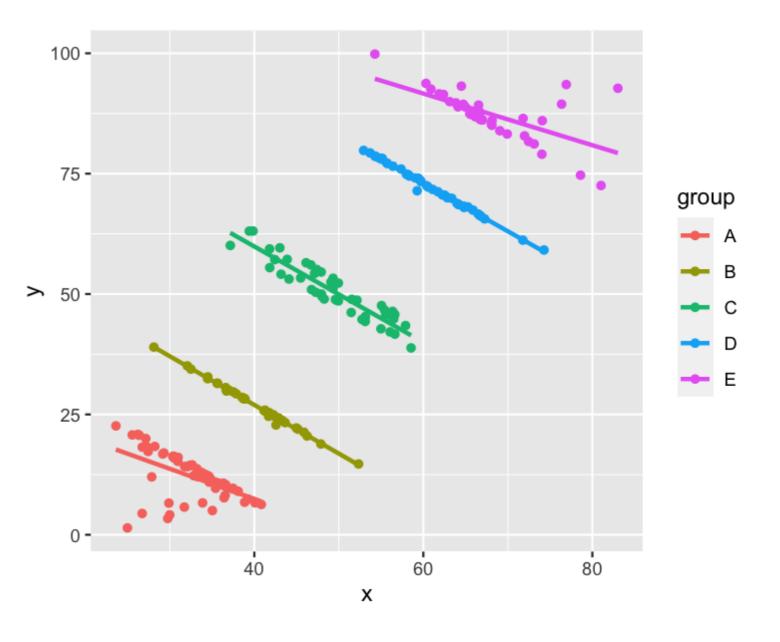
Plotting the whole dataset

ggplot(simpsons_paradox, aes(x, y)) + geom_point() + geom_smooth(method = "lm", se = FALSE)



Plotting by group

ggplot(simpsons_paradox, aes(x, y, color = group)) + geom_point() + geom_smooth(method = "lm", se = FALSE)



Reconciling the difference

Good advice

If possible, try to plot the dataset.

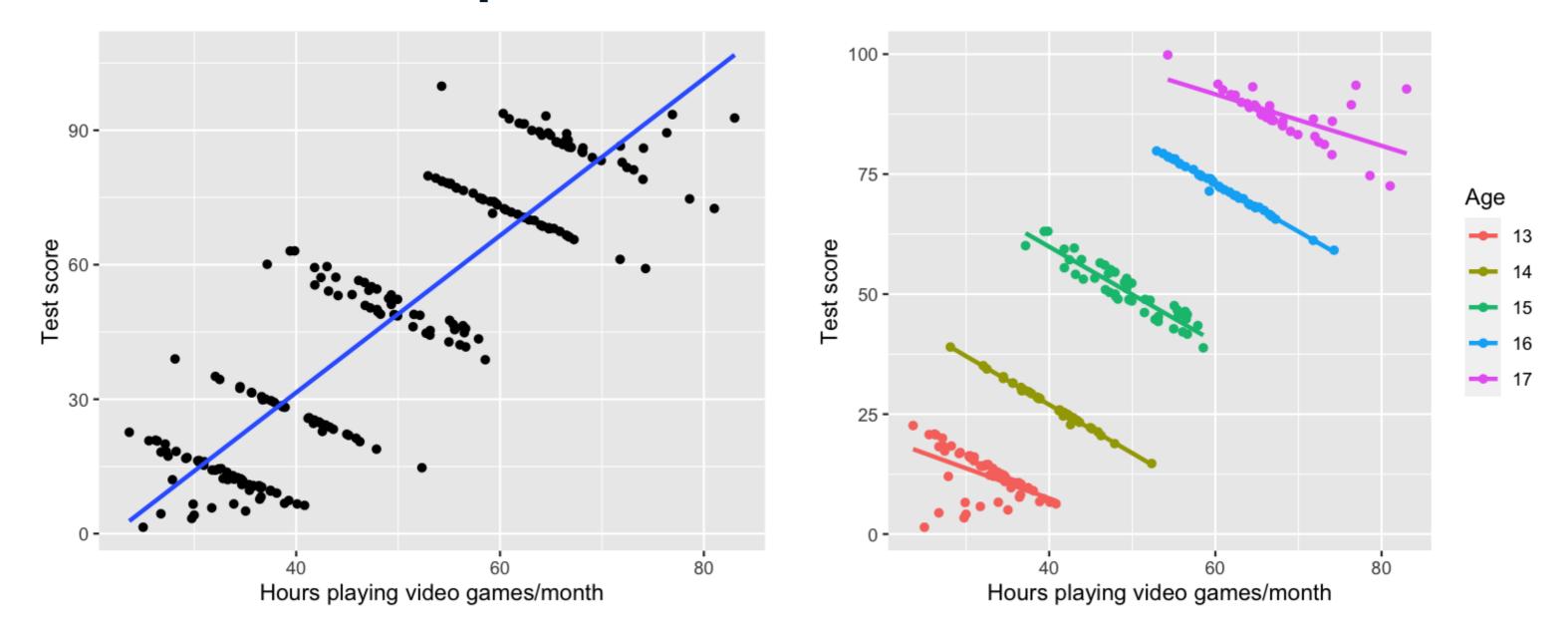
Common advice

You can't choose the best model in general—it depends on the dataset and the question you are trying to answer.

More good advice

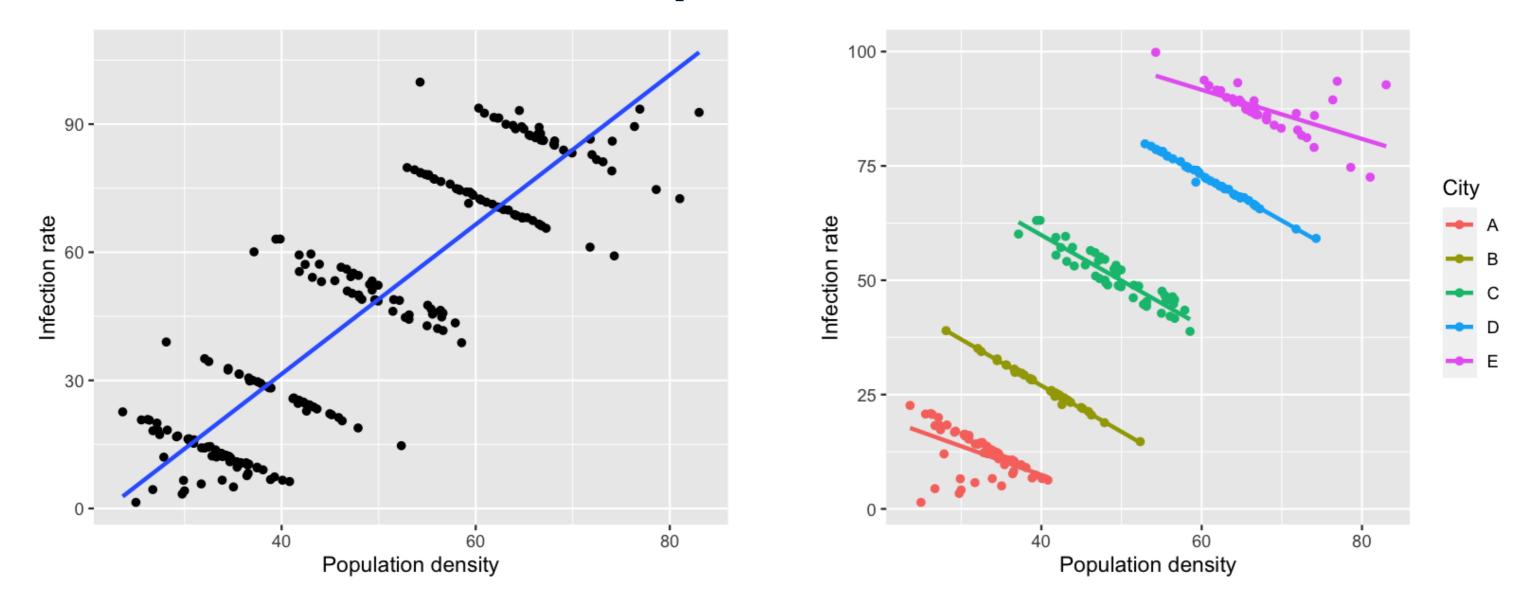
Articulate a question before you start modeling.

Test score example



datacamp

Infectious disease example



¹ https://stats.stackexchange.com/questions/478463/examples-of-simpsons-paradox-being-resolved-bychoosing-the-aggregate-data

latacamp

Reconciling the difference, again

- Usually (but not always) the grouped model contains more insight.
- Are you missing explanatory variables?
- Context is important.

Simpson's paradox in real datasets

- The paradox is usually less obvious.
- You may see a zero slope rather than a complete change in direction.
- It may not appear in every group.

Let's practice!

