Multiple logistic regression

INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

Bank churn dataset

time_since_last_purchase	time_since_first_purchase	has_churned
-0.515869	0.3993247	0
0.6780654	-0.4297957	1
0.4082544	3.7383122	0
-0.6990435	0.6032289	0
••	•••	•••
recency of activity	length of relationship	response

¹ https://www.rdocumentation.org/packages/bayesQR/topics/Churn

datacamp

glm(

glm(response ~ explanatory, data = dataset, family = binomial)

glm(response ~ explanatory1 + explanatory2, data = dataset, family = binomial)

glm(response ~ explanatory1 * explanatory2, data = dataset, family = binomial)

Prediction flow

```
explanatory_data <- expand_grid(</pre>
  explanatory1 = some_values,
  explanatory2 = some_values
)
prediction_data <- explanatory_data %>%
 mutate(
    has_churned = predict(mdl, explanatory_data, type = "response")
```

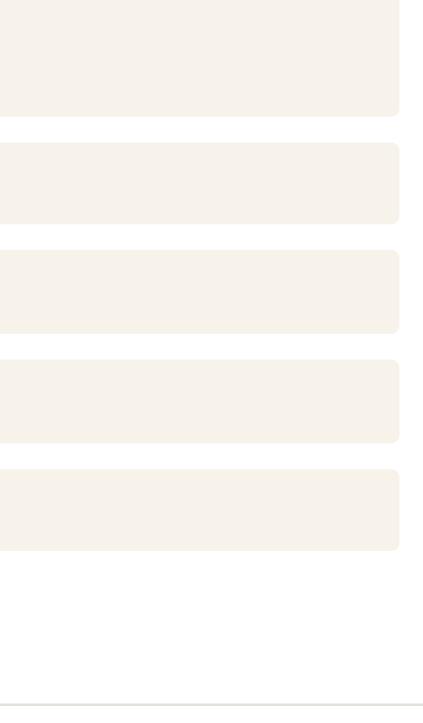

The four outcomes

	actual false	actual true
predicted false	correct	false negative
predicted true	false positive	correct

¹ https://campus.datacamp.com/courses/introduction-to-regression-in-r/simple-logistic-regression?ex=10

Confusion matrix

actual_response <- dataset\$response</pre> predicted_response <- round(fitted(mdl))</pre>


outcomes <- table(predicted_response, actual_response)</pre>

confusion <- conf_mat(outcomes)</pre>

autoplot(confusion)

summary(confusion, event_level = "second")

Visualization

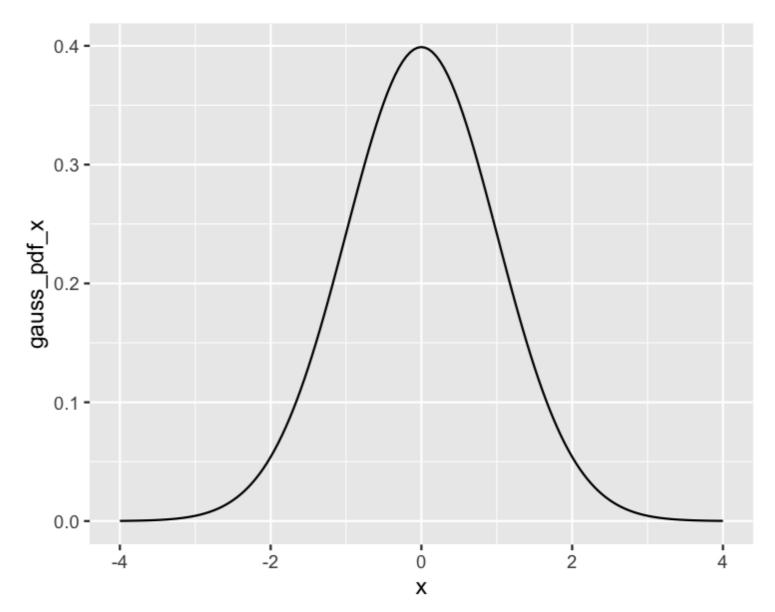
- Use faceting for categorical variables.
- For 2 numeric explanatory variables, use color for response.
- Give responses below 0.5 one color; responses above 0.5 another color.

scale_color_gradient2(midpoint = 0.5)

Let's practice!

The logistic distribution

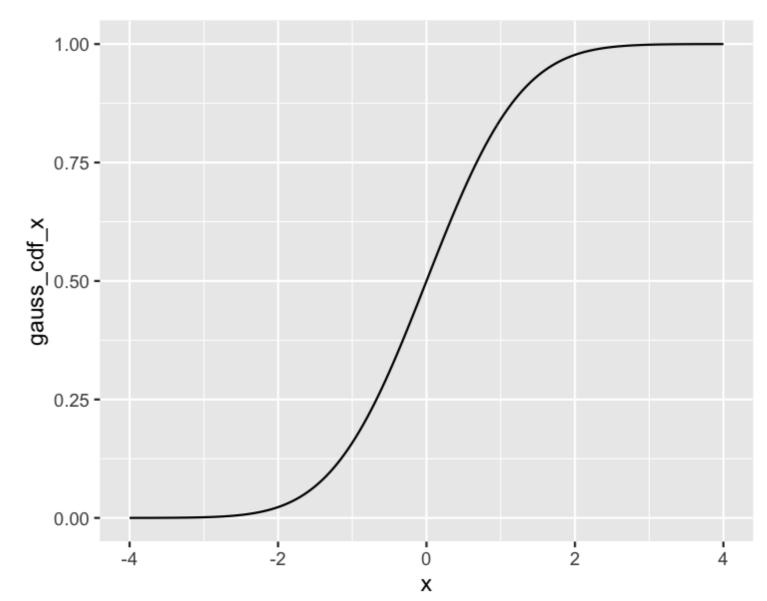
INTERMEDIATE REGRESSION IN R


Richie Cotton Data Evangelist at DataCamp

Gaussian probability density function (PDF)

gaussian_distn <- tibble(</pre> x = seq(-4, 4, 0.05),gauss_pdf_x = dnorm(x)

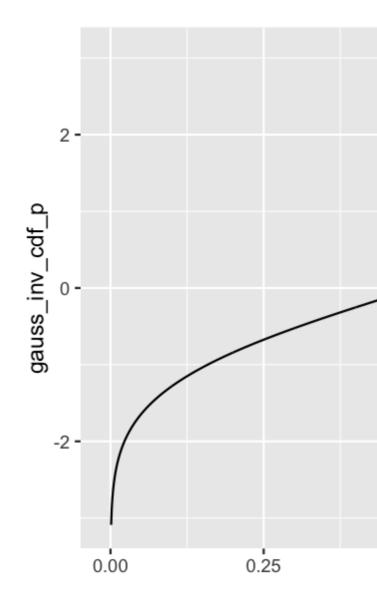
ggplot(gaussian_distn, aes(x, gauss_pdf_x)) + geom_line()



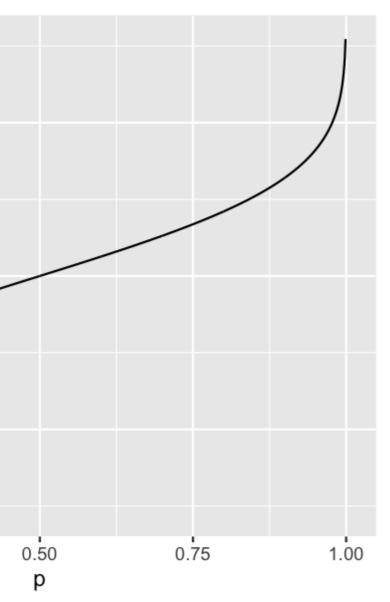
Gaussian cumulative distribution function (CDF)

gaussian_distn <- tibble(</pre> x = seq(-4, 4, 0.05),gauss_pdf_x = dnorm(x), gauss_cdf_x = pnorm(x)

ggplot(gaussian_distn, aes(x, gauss_cdf_x)) + geom_line()



Gaussian inverse CDF


```
gaussian_distn_inv <- tibble(</pre>
  p = seq(0.001, 0.999, 0.001),
  gauss_inv_cdf_p = qnorm(p)
```

```
ggplot(gaussian_distn_inv, aes(p, gauss_inv_cdf_p)) +
  geom_line()
```


Distribution function names

curve	prefix	normal	logistic	nmemonic
PDF	d	dnorm()	dlogis()	"d" for differentiate - you differentiate - yo
CDF	р	pnorm()	plogis()	"p" is backwards "q" so it's the CDF
Inv. CDF	q	<pre>qnorm()</pre>	qlogis()	"q" for quantile

rentiate the CDF to

inverse of the inverse

glm()'s family argument

lm(response ~ explanatory, data = dataset)

glm(response ~ explanatory, data = dataset, family = gaussian)

glm(response ~ explanatory, data = dataset, family = binomial)

¹ https://campus.datacamp.com/courses/introduction-to-regression-in-r/simple-logistic-regression?ex=1

gaussian()

str(gaussian())

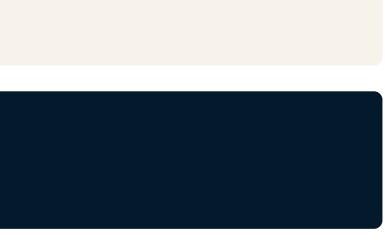
```
List of 11
$ family
           : chr "gaussian"
$ link : chr "identity"
 $ linkfun :function (mu)
$ linkinv :function (eta)
 $ variance :function (mu)
 $ dev.resids:function (y, mu, wt)
 $ aic :function (y, n, mu, wt, dev)
 $ mu.eta :function (eta)
 $ initialize: expression({ n <- rep.int(1, nobs) if (is.null(etastart) && is.null(start) &&</pre>
    is.null(mustart) && ((family$link| __truncated__
 $ validmu :function (mu)
 $ valideta :function (eta)
- attr(*, "class")= chr "family"
```

linkfun and linkinv

Link function is a transformation of the response variable

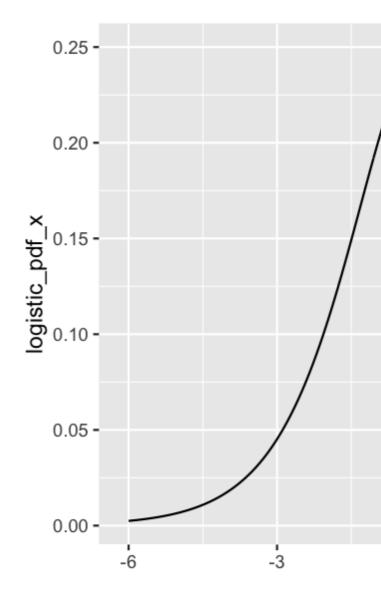
gaussian()\$linkfun

function (mu)

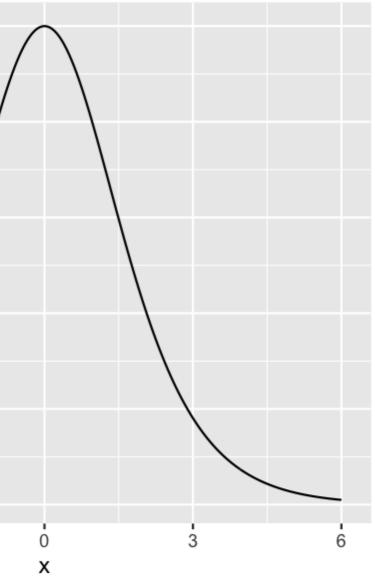

ΜU

gaussian()\$linkinv

function (eta) eta



Logistic PDF


```
logistic_distn <- tibble(</pre>
  x = seq(-6, 6, 0.05),
  logistic_pdf_x = dlogis(x)
```

```
ggplot(logistic_distn, aes(x, logistic_pdf_x)) +
 geom_line()
```


Logistic distribution

Logistic distribution CDF is also called the *logistic function*.

•
$$\operatorname{cdf}(x) = \frac{1}{(1 + exp(-x))}$$

- Logistic distribution inverse CDF is also called the *logit function*. \bullet
- inverse_cdf(p) = $log(\frac{p}{(1-p)})$

Let's practice!

How logistic regression works

INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

Sum of squares doesn't work

sum((y_pred - y_actual) ^ 2)

y_actual is always 0 or 1.

y_pred is between 0 and 1.

There is a better metric than sum of squares.

Likelihood

y_pred * y_actual

Likelihood

y_pred * y_actual + (1 - y_pred) * (1 - y_actual)

V datacamp

Likelihood

 $sum(y_pred * y_actual + (1 - y_pred) * (1 - y_actual))$

When $y_actual = 1$

 $y_pred * 1 + (1 - y_pred) * (1 - 1) = y_pred$

When y_actual = 0

 $y_pred * 0 + (1 - y_pred) * (1 - 0) = 1 - y_pred$

Log-likelihood

- Computing likelihood involves adding many very small numbers, leading to numerical error.
- Log-likelihood is easier to compute.

 $log(y_pred) * y_actual + log(1 - y_pred) * (1 - y_actual)$

Both equations give the same answer.

Negative log-likelihood

Maximizing log-likelihood is the same as minimizing negative log-likelihood.

-sum(log_likelihoods)

Logistic regression algorithm

```
calc_neg_log_likelihood <- function(coeffs) {</pre>
  intercept <- coeffs[1]</pre>
  slope <- coeffs[2]</pre>
  # More calculation!
}
```

```
optim(
  par = ???,
  fn = ???
```


Let's practice!

Congratulations

INTERMEDIATE REGRESSION IN R

Richie Cotton Data Evangelist

You learned things

Chapter 1

Fit/visualize/predict/assess parallel slopes

Chapter 2

- Interactions between explanatory variables
- Simpson's Paradox

Chapter 3

- Extend to many explanatory variables
- Implement linear regression algorithm

Chapter 4

- Logistic regression with multiple explanatory variables
- Logistic distribution
- Implement logistic regression algorithm

There is more to learn

- Training and testing sets
- Cross validation
- P-values and significance

Advanced regression

- Modeling with Data in the Tidyverse
- **Generalized Linear Models in R** \bullet
- Machine Learning with caret in R
- **Bayesian Regression Modeling with** \bullet rstanarm

Let's practice!

