read.csv
The utils
package, which is automatically loaded in your R session on startup, can import CSV files with the read.csv() function.
In this exercise, you’ll be working with swimming_pools.csv
[http://s3.amazonaws.com/assets.datacamp.com/production/course_1477/datasets/swimming_pools.csv]; it contains data on swimming pools in Brisbane, Australia (Source: data.gov.au). The file contains the column names in the first row. It uses a comma to separate values within rows.
Type dir() in the console to list the files in your working directory. You’ll see that it contains swimming_pools.csv
, so you can start straight away.
# Import swimming_pools.csv: pools
pools <- read.csv("_data/swimming_pools.csv", stringsAsFactors = TRUE)
# Print the structure of pools
str(pools)
## 'data.frame': 20 obs. of 4 variables:
## $ Name : Factor w/ 20 levels "Acacia Ridge Leisure Centre",..: 1 2 3 4 5 6 19 7 8 9 ...
## $ Address : Factor w/ 20 levels "1 Fairlead Crescent, Manly",..: 5 20 18 10 9 11 6 15 12 17 ...
## $ Latitude : num -27.6 -27.6 -27.6 -27.5 -27.4 ...
## $ Longitude: num 153 153 153 153 153 ...
stringsAsFactors
With stringsAsFactors
, you can tell R whether it should convert strings in the flat file to factors.
For all importing functions in the utils
package, this argument is FALSE
, which means that you import strings as strings. If you set stringsAsFactors
to FALSE
, the data frame columns corresponding to strings in your text file will be character
.
You’ll again be working with the swimming_pools.csv file. It contains two columns (Name
and Address
), which shouldn’t be factors.
# Import swimming_pools.csv correctly: pools
pools <- read.csv("_data/swimming_pools.csv", stringsAsFactors = FALSE)
# Check the structure of pools
str(pools)
## 'data.frame': 20 obs. of 4 variables:
## $ Name : chr "Acacia Ridge Leisure Centre" "Bellbowrie Pool" "Carole Park" "Centenary Pool (inner City)" ...
## $ Address : chr "1391 Beaudesert Road, Acacia Ridge" "Sugarwood Street, Bellbowrie" "Cnr Boundary Road and Waterford Road Wacol" "400 Gregory Terrace, Spring Hill" ...
## $ Latitude : num -27.6 -27.6 -27.6 -27.5 -27.4 ...
## $ Longitude: num 153 153 153 153 153 ...
read.delim
Aside from .csv
files, there are also the .txt
files which are basically text files. You can import these functions with read.delim(). By default, it sets the sep
argument to "\t"
(fields in a record are delimited by tabs) and the header
argument to TRUE
(the first row contains the field names).
In this exercise, you will import hotdogs.txt, containing information on sodium and calorie levels in different hotdogs (Source: UCLA). The dataset has 3 variables, but the variable names are not available in the first line of the file. The file uses tabs as field separators.
# Import hotdogs.txt: hotdogs
hotdogs <- read.delim("_data/hotdogs.txt", header = FALSE)
# Summarize hotdogs
summary(hotdogs)
## V1 V2 V3
## Length:54 Min. : 86.0 Min. :144.0
## Class :character 1st Qu.:132.0 1st Qu.:362.5
## Mode :character Median :145.0 Median :405.0
## Mean :145.4 Mean :424.8
## 3rd Qu.:172.8 3rd Qu.:503.5
## Max. :195.0 Max. :645.0
Nice one! You are now able to import .txt
files on your own!
read.table
If you’re dealing with more exotic flat file formats, you’ll want to use read.table(). It’s the most basic importing function; you can specify tons of different arguments in this function. Unlike read.csv() and read.delim(), the header argument defaults to FALSE
and the sep
argument is ""
by default.
Up to you again! The data is still hotdogs.txt. It has no column names in the first row, and the field separators are tabs. This time, though, the file is in the data
folder inside your current working directory. A variable path
with the location of this file is already coded for you.
# Path to the hotdogs.txt file: path
path <- file.path("_data", "hotdogs.txt")
# Import the hotdogs.txt file: hotdogs
hotdogs <- read.table(path,
sep = "\t",
col.names = c("type", "calories", "sodium"))
# Call head() on hotdogs
head(hotdogs)
## type calories sodium
## 1 Beef 186 495
## 2 Beef 181 477
## 3 Beef 176 425
## 4 Beef 149 322
## 5 Beef 184 482
## 6 Beef 190 587
Great! No need to specify the header
argument: it is FALSE
by default for read.table()
, which is exactly what you want here.
Arguments
Lily and Tom are having an argument because they want to share a hot dog but they can’t seem to agree on which one to choose. After some time, they simply decide that they will have one each. Lily wants to have the one with the fewest calories while Tom wants to have the one with the most sodium.
Next to calories
and sodium
, the hotdogs have one more variable: type
. This can be one of three things: Beef
, Meat
, or Poultry
, so a categorical variable: a factor is fine.
# Finish the read.delim() call
hotdogs <- read.delim("_data/hotdogs.txt", header = FALSE, col.names = c("type", "calories", "sodium"))
# Select the hot dog with the least calories: lily
lily <- hotdogs[which.min(hotdogs$calories), ]
# Select the observation with the most sodium: tom
tom <- hotdogs[which.max(hotdogs$sodium), ]
# Print lily and tom
lily
## type calories sodium
## 50 Poultry 86 358
tom
## type calories sodium
## 15 Beef 190 645
Column classes
Next to column names, you can also specify the column types or column classes of the resulting data frame. You can do this by setting the colClasses
argument to a vector of strings representing classes:
read.delim("my_file.txt",
colClasses = c("character",
"numeric",
"logical"))
This approach can be useful if you have some columns that should be factors and others that should be characters. You don’t have to bother with stringsAsFactors
anymore; just state for each column what the class should be.
If a column is set to "NULL"
in the colClasses
vector, this column will be skipped and will not be loaded into the data frame.
# Previous call to import hotdogs.txt
hotdogs <- read.delim("_data/hotdogs.txt", header = FALSE, col.names = c("type", "calories", "sodium"))
# Display structure of hotdogs
str(hotdogs)
## 'data.frame': 54 obs. of 3 variables:
## $ type : chr "Beef" "Beef" "Beef" "Beef" ...
## $ calories: int 186 181 176 149 184 190 158 139 175 148 ...
## $ sodium : int 495 477 425 322 482 587 370 322 479 375 ...
# Edit the colClasses argument to import the data correctly: hotdogs2
hotdogs2 <- read.delim("_data/hotdogs.txt", header = FALSE,
col.names = c("type", "calories", "sodium"),
colClasses = c("factor", "NULL", "numeric"))
# Display structure of hotdogs2
str(hotdogs2)
## 'data.frame': 54 obs. of 2 variables:
## $ type : Factor w/ 3 levels "Beef","Meat",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ sodium: num 495 477 425 322 482 587 370 322 479 375 ...
Wrappers
read.table()
is the main functionread.csv()
= wrapper for CSVread.delim()
= wrapper for tab-delimited filesread.csv2()
read.delim2()
exist for locale differences
Overview
readr
install.packages("readr")
library(readr)
read_csv
CSV files can be imported with read_csv(). It’s a wrapper function around read_delim() that handles all the details for you. For example, it will assume that the first row contains the column names.
The dataset you’ll be working with here is potatoes.csv. It gives information on the impact of storage period and cooking on potatoes’ flavor. It uses commas to delimit fields in a record, and contains column names in the first row. The file is available in your workspace. Remember that you can inspect your workspace with dir()
.
# Load the readr package
library(readr)
# Import potatoes.csv with read_csv(): potatoes
potatoes <- read_csv("_data/potatoes.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## area = col_double(),
## temp = col_double(),
## size = col_double(),
## storage = col_double(),
## method = col_double(),
## texture = col_double(),
## flavor = col_double(),
## moistness = col_double()
## )
read_tsv
Where you use read_csv()
to easily read in CSV files, you use read_tsv() to easily read in TSV files. TSV is short for tab-separated values.
This time, the potatoes data comes in the form of a tab-separated values file; potatoes.txt is available in your workspace. In contrast to potatoes.csv
, this file does not contain columns names in the first row, though.
There’s a vector properties
that you can use to specify these column names manually.
# readr is already loaded
# Column names
properties <- c("area", "temp", "size", "storage", "method",
"texture", "flavor", "moistness")
# Import potatoes.txt: potatoes
potatoes <- read_tsv("_data/potatoes.txt", col_names = properties)
##
## -- Column specification --------------------------------------------------------
## cols(
## area = col_double(),
## temp = col_double(),
## size = col_double(),
## storage = col_double(),
## method = col_double(),
## texture = col_double(),
## flavor = col_double(),
## moistness = col_double()
## )
# Call head() on potatoes
head(potatoes)
## # A tibble: 6 x 8
## area temp size storage method texture flavor moistness
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 1 1 1 2.9 3.2 3
## 2 1 1 1 1 2 2.3 2.5 2.6
## 3 1 1 1 1 3 2.5 2.8 2.8
## 4 1 1 1 1 4 2.1 2.9 2.4
## 5 1 1 1 1 5 1.9 2.8 2.2
## 6 1 1 1 2 1 1.8 3 1.7
Great work! Let’s learn some more about the read_delim()
function!
read_delim
Just as read.table() was the main utils function, read_delim() is the main readr function.
read_delim() takes two mandatory arguments:
file
: the file that contains the datadelim
: the character that separates the values in the data fileYou’ll again be working potatoes.txt; the file uses tabs ("\t"
) to delimit values and does not contain column names in its first line. It’s available in your working directory so you can start right away. As before, the vector properties
is available to set the col_names
.
# readr is already loaded
# Column names
properties <- c("area", "temp", "size", "storage", "method",
"texture", "flavor", "moistness")
# Import potatoes.txt using read_delim(): potatoes
potatoes <- read_delim("_data/potatoes.txt", delim = "\t", col_names = properties)
##
## -- Column specification --------------------------------------------------------
## cols(
## area = col_double(),
## temp = col_double(),
## size = col_double(),
## storage = col_double(),
## method = col_double(),
## texture = col_double(),
## flavor = col_double(),
## moistness = col_double()
## )
# Print out potatoes
potatoes
## # A tibble: 160 x 8
## area temp size storage method texture flavor moistness
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 1 1 1 2.9 3.2 3
## 2 1 1 1 1 2 2.3 2.5 2.6
## 3 1 1 1 1 3 2.5 2.8 2.8
## 4 1 1 1 1 4 2.1 2.9 2.4
## 5 1 1 1 1 5 1.9 2.8 2.2
## 6 1 1 1 2 1 1.8 3 1.7
## 7 1 1 1 2 2 2.6 3.1 2.4
## 8 1 1 1 2 3 3 3 2.9
## 9 1 1 1 2 4 2.2 3.2 2.5
## 10 1 1 1 2 5 2 2.8 1.9
## # ... with 150 more rows
Good job! Notice that you could just as well have used read_tsv() here. Proceed to the next exercise to learn more about readr
functions.
skip and n_max
Through skip
and n_max
you can control which part of your flat file you’re actually importing into R.
skip
specifies the number of lines you’re ignoring in the flat file before actually starting to import data.n_max
specifies the number of lines you’re actually importing.Say for example you have a CSV file with 20 lines, and set skip = 2
and n_max = 3
, you’re only reading in lines 3, 4 and 5 of the file.
Watch out: Once you skip
some lines, you also skip the first line that can contain column names!
potatoes.txt, a flat file with tab-delimited records and without column names, is available in your workspace.
# readr is already loaded
# Column names
properties <- c("area", "temp", "size", "storage", "method",
"texture", "flavor", "moistness")
# Import 5 observations from potatoes.txt: potatoes_fragment
potatoes_fragment <- read_tsv("_data/potatoes.txt", skip = 6, n_max = 5, col_names = properties)
##
## -- Column specification --------------------------------------------------------
## cols(
## area = col_double(),
## temp = col_double(),
## size = col_double(),
## storage = col_double(),
## method = col_double(),
## texture = col_double(),
## flavor = col_double(),
## moistness = col_double()
## )
str(potatoes_fragment)
## tibble [5 x 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ area : num [1:5] 1 1 1 1 1
## $ temp : num [1:5] 1 1 1 1 1
## $ size : num [1:5] 1 1 1 1 1
## $ storage : num [1:5] 2 2 2 2 3
## $ method : num [1:5] 2 3 4 5 1
## $ texture : num [1:5] 2.6 3 2.2 2 1.8
## $ flavor : num [1:5] 3.1 3 3.2 2.8 2.6
## $ moistness: num [1:5] 2.4 2.9 2.5 1.9 1.5
## - attr(*, "spec")=
## .. cols(
## .. area = col_double(),
## .. temp = col_double(),
## .. size = col_double(),
## .. storage = col_double(),
## .. method = col_double(),
## .. texture = col_double(),
## .. flavor = col_double(),
## .. moistness = col_double()
## .. )
Nice job! Feel free to check out the resulting data frames with str()
in the console!
col_types
You can also specify which types the columns in your imported data frame should have. You can do this with col_types
. If set to NULL
, the default, functions from the readr
package will try to find the correct types themselves. You can manually set the types with a string, where each character denotes the class of the column: c
haracter, d
ouble, i
nteger and l
ogical. _
skips the column as a whole.
potatoes.txt, a flat file with tab-delimited records and without column names, is again available in your workspace.
# readr is already loaded
# Column names
properties <- c("area", "temp", "size", "storage", "method",
"texture", "flavor", "moistness")
# Import all data, but force all columns to be character: potatoes_char
potatoes_char <- read_tsv("_data/potatoes.txt", col_types = "cccccccc", col_names = properties)
# Print out structure of potatoes_char
str(potatoes_char)
## tibble [160 x 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ area : chr [1:160] "1" "1" "1" "1" ...
## $ temp : chr [1:160] "1" "1" "1" "1" ...
## $ size : chr [1:160] "1" "1" "1" "1" ...
## $ storage : chr [1:160] "1" "1" "1" "1" ...
## $ method : chr [1:160] "1" "2" "3" "4" ...
## $ texture : chr [1:160] "2.9" "2.3" "2.5" "2.1" ...
## $ flavor : chr [1:160] "3.2" "2.5" "2.8" "2.9" ...
## $ moistness: chr [1:160] "3.0" "2.6" "2.8" "2.4" ...
## - attr(*, "spec")=
## .. cols(
## .. area = col_character(),
## .. temp = col_character(),
## .. size = col_character(),
## .. storage = col_character(),
## .. method = col_character(),
## .. texture = col_character(),
## .. flavor = col_character(),
## .. moistness = col_character()
## .. )
col_types with collectors
Another way of setting the types of the imported columns is using collectors. Collector functions can be passed in a list() to the col_types
argument of read_
functions to tell them how to interpret values in a column.
For a complete list of collector functions, you can take a look at the collector documentation. For this exercise you will need two collector functions:
col_integer()
: the column should be interpreted as an integer.col_factor(levels, ordered = FALSE)
: the column should be interpreted as a factor with levels.In this exercise, you will work with hotdogs.txt, which is a tab-delimited file without column names in the first row.
# readr is already loaded
# Import without col_types
hotdogs <- read_tsv("_data/hotdogs.txt", col_names = c("type", "calories", "sodium"))
##
## -- Column specification --------------------------------------------------------
## cols(
## type = col_character(),
## calories = col_double(),
## sodium = col_double()
## )
# Display the summary of hotdogs
summary(hotdogs)
## type calories sodium
## Length:54 Min. : 86.0 Min. :144.0
## Class :character 1st Qu.:132.0 1st Qu.:362.5
## Mode :character Median :145.0 Median :405.0
## Mean :145.4 Mean :424.8
## 3rd Qu.:172.8 3rd Qu.:503.5
## Max. :195.0 Max. :645.0
# The collectors you will need to import the data
fac <- col_factor(levels = c("Beef", "Meat", "Poultry"))
int <- col_integer()
# Edit the col_types argument to import the data correctly: hotdogs_factor
hotdogs_factor <- read_tsv("_data/hotdogs.txt",
col_names = c("type", "calories", "sodium"),
col_types = list(fac, int, int))
# Display the summary of hotdogs_factor
summary(hotdogs_factor)
## type calories sodium
## Beef :20 Min. : 86.0 Min. :144.0
## Meat :17 1st Qu.:132.0 1st Qu.:362.5
## Poultry:17 Median :145.0 Median :405.0
## Mean :145.4 Mean :424.8
## 3rd Qu.:172.8 3rd Qu.:503.5
## Max. :195.0 Max. :645.0
Awesome! The summary of hotdogs_factor
clearly contains more interesting information for the type
column, right?
data.table
fread()
install.packages("data.table")
library(data.table)
read.table()
fread
fread
You still remember how to use read.table(), right? Well, fread() is a function that does the same job with very similar arguments. It is extremely easy to use and blazingly fast! Often, simply specifying the path to the file is enough to successfully import your data.
Don’t take our word for it, try it yourself! You’ll be working with the potatoes.csv file, that’s available in your workspace. Fields are delimited by commas, and the first line contains the column names.
# load the data.table package using library()
library(data.table)
# Import potatoes.csv with fread(): potatoes
potatoes <- fread("_data/potatoes.csv")
# Print out potatoes
potatoes
## area temp size storage method texture flavor moistness
## 1: 1 1 1 1 1 2.9 3.2 3.0
## 2: 1 1 1 1 2 2.3 2.5 2.6
## 3: 1 1 1 1 3 2.5 2.8 2.8
## 4: 1 1 1 1 4 2.1 2.9 2.4
## 5: 1 1 1 1 5 1.9 2.8 2.2
## ---
## 156: 2 2 2 4 1 2.7 3.3 2.6
## 157: 2 2 2 4 2 2.6 2.8 2.3
## 158: 2 2 2 4 3 2.5 3.1 2.6
## 159: 2 2 2 4 4 3.4 3.3 3.0
## 160: 2 2 2 4 5 2.5 2.8 2.3
Amazingly easy, right?
fread: more advanced use
Now that you know the basics about fread(), you should know about two arguments of the function: drop
and select
, to drop or select variables of interest.
Suppose you have a dataset that contains 5 variables and you want to keep the first and fifth variable, named “a” and “e”. The following options will all do the trick:
fread("path/to/file.txt", drop = 2:4)
fread("path/to/file.txt", select = c(1, 5))
fread("path/to/file.txt", drop = c("b", "c", "d"))
fread("path/to/file.txt", select = c("a", "e"))
Let’s stick with potatoes since we’re particularly fond of them here at DataCamp. The data is again available in the file potatoes.csv, containing comma-separated records.
# fread is already loaded
# Import columns 6 and 8 of potatoes.csv: potatoes
potatoes <- fread("_data/potatoes.csv", select = c(6, 8))
# Plot texture (x) and moistness (y) of potatoes
plot(potatoes$texture, potatoes$moistness)
Congratulations! We can see that moistness and texture are positively correlated.
Microsoft Excel
readxl
- Hadley Wickhamreadxl
excel_sheets()
read_excel()
install.packages("readxl")
library(readxl)
List the sheets of an Excel file
Before you can start importing from Excel, you should find out which sheets are available in the workbook. You can use the excel_sheets() function for this.
You will find the Excel file urbanpop.xlsx in your working directory (type dir() to see it). This dataset contains urban population metrics for practically all countries in the world throughout time (Source: Gapminder). It contains three sheets for three different time periods. In each sheet, the first row contains the column names.
# Load the readxl package
library(readxl)
# Print the names of all worksheets
excel_sheets("_data/urbanpop.xlsx")
## [1] "1960-1966" "1967-1974" "1975-2011"
Congratulations! As you can see, the result of excel_sheets() is simply a character vector; you haven’t imported anything yet. That’s something for the read_excel() function. Learn all about it in the next exercise!
Import an Excel sheet
Now that you know the names of the sheets in the Excel file you want to import, it is time to import those sheets into R. You can do this with the read_excel() function. Have a look at this recipe:
data <- read_excel("data.xlsx", sheet = "my_sheet")
This call simply imports the sheet with the name "my_sheet"
from the "data.xlsx"
file. You can also pass a number to the sheet
argument; this will cause read_excel() to import the sheet with the given sheet number. sheet = 1
will import the first sheet, sheet = 2
will import the second sheet, and so on.
In this exercise, you’ll continue working with the urbanpop.xlsx file.
# The readxl package is already loaded
# Read the sheets, one by one
pop_1 <- read_excel("_data/urbanpop.xlsx", sheet = 1)
pop_2 <- read_excel("_data/urbanpop.xlsx", sheet = 2)
pop_3 <- read_excel("_data/urbanpop.xlsx", sheet = 3)
# Put pop_1, pop_2 and pop_3 in a list: pop_list
pop_list <- list(pop_1, pop_2, pop_3)
# Display the structure of pop_list
str(pop_list)
## List of 3
## $ : tibble [209 x 8] (S3: tbl_df/tbl/data.frame)
## ..$ country: chr [1:209] "Afghanistan" "Albania" "Algeria" "American Samoa" ...
## ..$ 1960 : num [1:209] 769308 494443 3293999 NA NA ...
## ..$ 1961 : num [1:209] 814923 511803 3515148 13660 8724 ...
## ..$ 1962 : num [1:209] 858522 529439 3739963 14166 9700 ...
## ..$ 1963 : num [1:209] 903914 547377 3973289 14759 10748 ...
## ..$ 1964 : num [1:209] 951226 565572 4220987 15396 11866 ...
## ..$ 1965 : num [1:209] 1000582 583983 4488176 16045 13053 ...
## ..$ 1966 : num [1:209] 1058743 602512 4649105 16693 14217 ...
## $ : tibble [209 x 9] (S3: tbl_df/tbl/data.frame)
## ..$ country: chr [1:209] "Afghanistan" "Albania" "Algeria" "American Samoa" ...
## ..$ 1967 : num [1:209] 1119067 621180 4826104 17349 15440 ...
## ..$ 1968 : num [1:209] 1182159 639964 5017299 17996 16727 ...
## ..$ 1969 : num [1:209] 1248901 658853 5219332 18619 18088 ...
## ..$ 1970 : num [1:209] 1319849 677839 5429743 19206 19529 ...
## ..$ 1971 : num [1:209] 1409001 698932 5619042 19752 20929 ...
## ..$ 1972 : num [1:209] 1502402 720207 5815734 20263 22406 ...
## ..$ 1973 : num [1:209] 1598835 741681 6020647 20742 23937 ...
## ..$ 1974 : num [1:209] 1696445 763385 6235114 21194 25482 ...
## $ : tibble [209 x 38] (S3: tbl_df/tbl/data.frame)
## ..$ country: chr [1:209] "Afghanistan" "Albania" "Algeria" "American Samoa" ...
## ..$ 1975 : num [1:209] 1793266 785350 6460138 21632 27019 ...
## ..$ 1976 : num [1:209] 1905033 807990 6774099 22047 28366 ...
## ..$ 1977 : num [1:209] 2021308 830959 7102902 22452 29677 ...
## ..$ 1978 : num [1:209] 2142248 854262 7447728 22899 31037 ...
## ..$ 1979 : num [1:209] 2268015 877898 7810073 23457 32572 ...
## ..$ 1980 : num [1:209] 2398775 901884 8190772 24177 34366 ...
## ..$ 1981 : num [1:209] 2493265 927224 8637724 25173 36356 ...
## ..$ 1982 : num [1:209] 2590846 952447 9105820 26342 38618 ...
## ..$ 1983 : num [1:209] 2691612 978476 9591900 27655 40983 ...
## ..$ 1984 : num [1:209] 2795656 1006613 10091289 29062 43207 ...
## ..$ 1985 : num [1:209] 2903078 1037541 10600112 30524 45119 ...
## ..$ 1986 : num [1:209] 3006983 1072365 11101757 32014 46254 ...
## ..$ 1987 : num [1:209] 3113957 1109954 11609104 33548 47019 ...
## ..$ 1988 : num [1:209] 3224082 1146633 12122941 35095 47669 ...
## ..$ 1989 : num [1:209] 3337444 1177286 12645263 36618 48577 ...
## ..$ 1990 : num [1:209] 3454129 1198293 13177079 38088 49982 ...
## ..$ 1991 : num [1:209] 3617842 1215445 13708813 39600 51972 ...
## ..$ 1992 : num [1:209] 3788685 1222544 14248297 41049 54469 ...
## ..$ 1993 : num [1:209] 3966956 1222812 14789176 42443 57079 ...
## ..$ 1994 : num [1:209] 4152960 1221364 15322651 43798 59243 ...
## ..$ 1995 : num [1:209] 4347018 1222234 15842442 45129 60598 ...
## ..$ 1996 : num [1:209] 4531285 1228760 16395553 46343 60927 ...
## ..$ 1997 : num [1:209] 4722603 1238090 16935451 47527 60462 ...
## ..$ 1998 : num [1:209] 4921227 1250366 17469200 48705 59685 ...
## ..$ 1999 : num [1:209] 5127421 1265195 18007937 49906 59281 ...
## ..$ 2000 : num [1:209] 5341456 1282223 18560597 51151 59719 ...
## ..$ 2001 : num [1:209] 5564492 1315690 19198872 52341 61062 ...
## ..$ 2002 : num [1:209] 5795940 1352278 19854835 53583 63212 ...
## ..$ 2003 : num [1:209] 6036100 1391143 20529356 54864 65802 ...
## ..$ 2004 : num [1:209] 6285281 1430918 21222198 56166 68301 ...
## ..$ 2005 : num [1:209] 6543804 1470488 21932978 57474 70329 ...
## ..$ 2006 : num [1:209] 6812538 1512255 22625052 58679 71726 ...
## ..$ 2007 : num [1:209] 7091245 1553491 23335543 59894 72684 ...
## ..$ 2008 : num [1:209] 7380272 1594351 24061749 61118 73335 ...
## ..$ 2009 : num [1:209] 7679982 1635262 24799591 62357 73897 ...
## ..$ 2010 : num [1:209] 7990746 1676545 25545622 63616 74525 ...
## ..$ 2011 : num [1:209] 8316976 1716842 26216968 64817 75207 ...
Great! Now you imported the sheets from urbanpop.xlsx
correctly. From here on you are able to read and to operate on the imported file. In the next exercise you will learn how to use both the excel_sheets() and the read_excel() function in combination with lapply() to read multiple sheets at once.
Reading a workbook
In the previous exercise you generated a list of three Excel sheets that you imported. However, loading in every sheet manually and then merging them in a list can be quite tedious. Luckily, you can automate this with lapply(). If you have no experience with lapply(), feel free to take Chapter 4 of the Intermediate R course.
Have a look at the example code below:
my_workbook <- lapply(excel_sheets("data.xlsx"),
read_excel,
path = "data.xlsx")
The read_excel() function is called multiple times on the "data.xlsx"
file and each sheet is loaded in one after the other. The result is a list of data frames, each data frame representing one of the sheets in data.xlsx
.
You’re still working with the urbanpop.xlsx file.
# The readxl package is already loaded
# Read all Excel sheets with lapply(): pop_list
pop_list <- lapply(excel_sheets("_data/urbanpop.xlsx"), read_excel, path = "_data/urbanpop.xlsx")
# Display the structure of pop_list
str(pop_list)
## List of 3
## $ : tibble [209 x 8] (S3: tbl_df/tbl/data.frame)
## ..$ country: chr [1:209] "Afghanistan" "Albania" "Algeria" "American Samoa" ...
## ..$ 1960 : num [1:209] 769308 494443 3293999 NA NA ...
## ..$ 1961 : num [1:209] 814923 511803 3515148 13660 8724 ...
## ..$ 1962 : num [1:209] 858522 529439 3739963 14166 9700 ...
## ..$ 1963 : num [1:209] 903914 547377 3973289 14759 10748 ...
## ..$ 1964 : num [1:209] 951226 565572 4220987 15396 11866 ...
## ..$ 1965 : num [1:209] 1000582 583983 4488176 16045 13053 ...
## ..$ 1966 : num [1:209] 1058743 602512 4649105 16693 14217 ...
## $ : tibble [209 x 9] (S3: tbl_df/tbl/data.frame)
## ..$ country: chr [1:209] "Afghanistan" "Albania" "Algeria" "American Samoa" ...
## ..$ 1967 : num [1:209] 1119067 621180 4826104 17349 15440 ...
## ..$ 1968 : num [1:209] 1182159 639964 5017299 17996 16727 ...
## ..$ 1969 : num [1:209] 1248901 658853 5219332 18619 18088 ...
## ..$ 1970 : num [1:209] 1319849 677839 5429743 19206 19529 ...
## ..$ 1971 : num [1:209] 1409001 698932 5619042 19752 20929 ...
## ..$ 1972 : num [1:209] 1502402 720207 5815734 20263 22406 ...
## ..$ 1973 : num [1:209] 1598835 741681 6020647 20742 23937 ...
## ..$ 1974 : num [1:209] 1696445 763385 6235114 21194 25482 ...
## $ : tibble [209 x 38] (S3: tbl_df/tbl/data.frame)
## ..$ country: chr [1:209] "Afghanistan" "Albania" "Algeria" "American Samoa" ...
## ..$ 1975 : num [1:209] 1793266 785350 6460138 21632 27019 ...
## ..$ 1976 : num [1:209] 1905033 807990 6774099 22047 28366 ...
## ..$ 1977 : num [1:209] 2021308 830959 7102902 22452 29677 ...
## ..$ 1978 : num [1:209] 2142248 854262 7447728 22899 31037 ...
## ..$ 1979 : num [1:209] 2268015 877898 7810073 23457 32572 ...
## ..$ 1980 : num [1:209] 2398775 901884 8190772 24177 34366 ...
## ..$ 1981 : num [1:209] 2493265 927224 8637724 25173 36356 ...
## ..$ 1982 : num [1:209] 2590846 952447 9105820 26342 38618 ...
## ..$ 1983 : num [1:209] 2691612 978476 9591900 27655 40983 ...
## ..$ 1984 : num [1:209] 2795656 1006613 10091289 29062 43207 ...
## ..$ 1985 : num [1:209] 2903078 1037541 10600112 30524 45119 ...
## ..$ 1986 : num [1:209] 3006983 1072365 11101757 32014 46254 ...
## ..$ 1987 : num [1:209] 3113957 1109954 11609104 33548 47019 ...
## ..$ 1988 : num [1:209] 3224082 1146633 12122941 35095 47669 ...
## ..$ 1989 : num [1:209] 3337444 1177286 12645263 36618 48577 ...
## ..$ 1990 : num [1:209] 3454129 1198293 13177079 38088 49982 ...
## ..$ 1991 : num [1:209] 3617842 1215445 13708813 39600 51972 ...
## ..$ 1992 : num [1:209] 3788685 1222544 14248297 41049 54469 ...
## ..$ 1993 : num [1:209] 3966956 1222812 14789176 42443 57079 ...
## ..$ 1994 : num [1:209] 4152960 1221364 15322651 43798 59243 ...
## ..$ 1995 : num [1:209] 4347018 1222234 15842442 45129 60598 ...
## ..$ 1996 : num [1:209] 4531285 1228760 16395553 46343 60927 ...
## ..$ 1997 : num [1:209] 4722603 1238090 16935451 47527 60462 ...
## ..$ 1998 : num [1:209] 4921227 1250366 17469200 48705 59685 ...
## ..$ 1999 : num [1:209] 5127421 1265195 18007937 49906 59281 ...
## ..$ 2000 : num [1:209] 5341456 1282223 18560597 51151 59719 ...
## ..$ 2001 : num [1:209] 5564492 1315690 19198872 52341 61062 ...
## ..$ 2002 : num [1:209] 5795940 1352278 19854835 53583 63212 ...
## ..$ 2003 : num [1:209] 6036100 1391143 20529356 54864 65802 ...
## ..$ 2004 : num [1:209] 6285281 1430918 21222198 56166 68301 ...
## ..$ 2005 : num [1:209] 6543804 1470488 21932978 57474 70329 ...
## ..$ 2006 : num [1:209] 6812538 1512255 22625052 58679 71726 ...
## ..$ 2007 : num [1:209] 7091245 1553491 23335543 59894 72684 ...
## ..$ 2008 : num [1:209] 7380272 1594351 24061749 61118 73335 ...
## ..$ 2009 : num [1:209] 7679982 1635262 24799591 62357 73897 ...
## ..$ 2010 : num [1:209] 7990746 1676545 25545622 63616 74525 ...
## ..$ 2011 : num [1:209] 8316976 1716842 26216968 64817 75207 ...
Congratulations! If you’re clever, reading multiple Excel sheets doesn’t require a lot of coding at all!
Wrap-up
readr
packageThe col_names argument
Apart from path
and sheet
, there are several other arguments you can specify in read_excel(). One of these arguments is called col_names
.
By default it is TRUE
, denoting whether the first row in the Excel sheets contains the column names. If this is not the case, you can set col_names
to FALSE
. In this case, R will choose column names for you. You can also choose to set col_names
to a character vector with names for each column. It works exactly the same as in the readr
package.
You’ll be working with the urbanpop_nonames.xlsx file. It contains the same data as urbanpop.xlsx but has no column names in the first row of the excel sheets.
# The readxl package is already loaded
# Import the first Excel sheet of urbanpop_nonames.xlsx (R gives names): pop_a
pop_a <- read_excel("_data/urbanpop_nonames.xlsx", col_names = FALSE)
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
# Import the first Excel sheet of urbanpop_nonames.xlsx (specify col_names): pop_b
cols <- c("country", paste0("year_", 1960:1966))
pop_b <- read_excel("_data/urbanpop_nonames.xlsx", col_names = cols)
# Print the summary of pop_a
summary(pop_a)
## ...1 ...2 ...3 ...4
## Length:209 Min. : 3378 Min. : 1028 Min. : 1090
## Class :character 1st Qu.: 88978 1st Qu.: 70644 1st Qu.: 74974
## Mode :character Median : 580675 Median : 570159 Median : 593968
## Mean : 4988124 Mean : 4991613 Mean : 5141592
## 3rd Qu.: 3077228 3rd Qu.: 2807280 3rd Qu.: 2948396
## Max. :126469700 Max. :129268133 Max. :131974143
## NA's :11
## ...5 ...6 ...7
## Min. : 1154 Min. : 1218 Min. : 1281
## 1st Qu.: 81870 1st Qu.: 84953 1st Qu.: 88633
## Median : 619331 Median : 645262 Median : 679109
## Mean : 5303711 Mean : 5468966 Mean : 5637394
## 3rd Qu.: 3148941 3rd Qu.: 3296444 3rd Qu.: 3317422
## Max. :134599886 Max. :137205240 Max. :139663053
##
## ...8
## Min. : 1349
## 1st Qu.: 93638
## Median : 735139
## Mean : 5790281
## 3rd Qu.: 3418036
## Max. :141962708
##
# Print the summary of pop_b
summary(pop_b)
## country year_1960 year_1961 year_1962
## Length:209 Min. : 3378 Min. : 1028 Min. : 1090
## Class :character 1st Qu.: 88978 1st Qu.: 70644 1st Qu.: 74974
## Mode :character Median : 580675 Median : 570159 Median : 593968
## Mean : 4988124 Mean : 4991613 Mean : 5141592
## 3rd Qu.: 3077228 3rd Qu.: 2807280 3rd Qu.: 2948396
## Max. :126469700 Max. :129268133 Max. :131974143
## NA's :11
## year_1963 year_1964 year_1965
## Min. : 1154 Min. : 1218 Min. : 1281
## 1st Qu.: 81870 1st Qu.: 84953 1st Qu.: 88633
## Median : 619331 Median : 645262 Median : 679109
## Mean : 5303711 Mean : 5468966 Mean : 5637394
## 3rd Qu.: 3148941 3rd Qu.: 3296444 3rd Qu.: 3317422
## Max. :134599886 Max. :137205240 Max. :139663053
##
## year_1966
## Min. : 1349
## 1st Qu.: 93638
## Median : 735139
## Mean : 5790281
## 3rd Qu.: 3418036
## Max. :141962708
##
Well done! Did you spot the difference between the summaries? It’s really crucial to correctly tell R whether your Excel data contains column names. If you don’t, the head of the data frame you end up with will contain incorrect information…
The skip argument
Another argument that can be very useful when reading in Excel files that are less tidy, is skip
. With skip
, you can tell R to ignore a specified number of rows inside the Excel sheets you’re trying to pull data from. Have a look at this example:
read_excel("data.xlsx", skip = 15)
In this case, the first 15 rows in the first sheet of "data.xlsx"
are ignored.
If the first row of this sheet contained the column names, this information will also be ignored by readxl
. Make sure to set col_names
to FALSE
or manually specify column names in this case!
The file urbanpop.xlsx is available in your directory; it has column names in the first rows.
# The readxl package is already loaded
# Import the second sheet of urbanpop.xlsx, skipping the first 21 rows: urbanpop_sel
urbanpop_sel <- read_excel("_data/urbanpop.xlsx", sheet = 2, col_names = FALSE, skip = 21)
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
# Print out the first observation from urbanpop_sel
urbanpop_sel[1,]
## # A tibble: 1 x 9
## ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Benin 382022. 411859. 443013. 475611. 515820. 557938. 602093. 648410.
Nice job! This is about as complicated as the read_excel() call can get! Time to learn about another package to import data from Excel: gdata
.
gdata
read.xls()
readxl::excel_sheets()
equivalentImport a local file
In this part of the chapter you’ll learn how to import .xls
files using the gdata
package. Similar to the readxl
package, you can import single Excel sheets from Excel sheets to start your analysis in R.
You’ll be working with the urbanpop.xls dataset, the .xls
version of the Excel file you’ve been working with before. It’s available in your current working directory.
# Load the gdata package
library(gdata)
## gdata: Unable to locate valid perl interpreter
## gdata:
## gdata: read.xls() will be unable to read Excel XLS and XLSX files
## gdata: unless the 'perl=' argument is used to specify the location of a
## gdata: valid perl intrpreter.
## gdata:
## gdata: (To avoid display of this message in the future, please ensure
## gdata: perl is installed and available on the executable search path.)
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLX' (Excel 97-2004) files.
##
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLSX' (Excel 2007+) files.
##
## gdata: Run the function 'installXLSXsupport()'
## gdata: to automatically download and install the perl
## gdata: libaries needed to support Excel XLS and XLSX formats.
##
## Attaching package: 'gdata'
## The following objects are masked from 'package:data.table':
##
## first, last
## The following object is masked from 'package:stats':
##
## nobs
## The following object is masked from 'package:utils':
##
## object.size
## The following object is masked from 'package:base':
##
## startsWith
perl_path <- "C:/Strawberry/perl/bin/perl.exe"
# Import the second sheet of urbanpop.xls: urban_pop
urban_pop <- read.xls("_data/urbanpop.xls", sheet = "1967-1974", perl = perl_path)
# Print the first 11 observations using head()
head(urban_pop, n = 11)
## country X1967 X1968 X1969 X1970
## 1 Afghanistan 1119067.20 1182159.06 1248900.79 1319848.78
## 2 Albania 621179.85 639964.46 658853.12 677839.12
## 3 Algeria 4826104.22 5017298.60 5219331.87 5429743.08
## 4 American Samoa 17348.66 17995.51 18618.68 19206.39
## 5 Andorra 15439.62 16726.99 18088.32 19528.96
## 6 Angola 757496.32 798459.26 841261.96 886401.63
## 7 Antigua and Barbuda 22086.25 22149.39 22182.92 22180.87
## 8 Argentina 17753280.98 18124103.64 18510462.30 18918072.79
## 9 Armenia 1337032.09 1392892.13 1449641.49 1507619.77
## 10 Aruba 29414.72 29576.09 29737.87 29901.57
## 11 Australia 9934404.03 10153969.77 10412390.67 10664093.55
## X1971 X1972 X1973 X1974
## 1 1409001.09 1502401.79 1598835.45 1696444.83
## 2 698932.25 720206.57 741681.04 763385.45
## 3 5619041.53 5815734.49 6020647.35 6235114.38
## 4 19752.02 20262.67 20741.97 21194.38
## 5 20928.73 22405.84 23937.05 25481.98
## 6 955010.09 1027397.35 1103829.78 1184486.23
## 7 22560.87 22907.76 23221.29 23502.92
## 8 19329718.16 19763078.00 20211424.85 20664728.90
## 9 1564367.60 1622103.53 1680497.75 1739063.02
## 10 30081.36 30279.76 30467.42 30602.87
## 11 11047706.39 11269945.50 11461120.68 11772934.25
Congratulations! There seems to be a lot of missing data, but read.xls() knows how to handle it. In the next exercise you will learn which arguments you can use in read.xls()
.
read.xls() wraps around read.table()
Remember how read.xls() actually works? It basically comes down to two steps: converting the Excel file to a .csv
file using a Perl script, and then reading that .csv
file with the read.csv() function that is loaded by default in R, through the utils
package.
This means that all the options that you can specify in read.csv(), can also be specified in read.xls().
The urbanpop.xls dataset is already available in your workspace. It’s still comprised of three sheets, and has column names in the first row of each sheet.
# The gdata package is already loaded
# Column names for urban_pop
columns <- c("country", paste0("year_", 1967:1974))
# Finish the read.xls call
urban_pop <- read.xls("_data/urbanpop.xls", sheet = 2,
skip = 50, header = FALSE, stringsAsFactors = FALSE,
col.names = columns,
perl = perl_path)
# Print first 10 observation of urban_pop
head(urban_pop, n = 10)
## country year_1967 year_1968 year_1969 year_1970
## 1 Cyprus 231929.74 237831.38 243983.34 250164.52
## 2 Czech Republic 6204409.91 6266304.50 6326368.97 6348794.89
## 3 Denmark 3777552.62 3826785.08 3874313.99 3930042.97
## 4 Djibouti 77788.04 84694.35 92045.77 99845.22
## 5 Dominica 27550.36 29527.32 31475.62 33328.25
## 6 Dominican Republic 1535485.43 1625455.76 1718315.40 1814060.00
## 7 Ecuador 2059355.12 2151395.14 2246890.79 2345864.41
## 8 Egypt 13798171.00 14248342.19 14703858.22 15162858.52
## 9 El Salvador 1345528.98 1387218.33 1429378.98 1472181.26
## 10 Equatorial Guinea 75364.50 77295.03 78445.74 78411.07
## year_1971 year_1972 year_1973 year_1974
## 1 261213.21 272407.99 283774.90 295379.83
## 2 6437055.17 6572632.32 6718465.53 6873458.18
## 3 3981360.12 4028247.92 4076867.28 4120201.43
## 4 107799.69 116098.23 125391.58 136606.25
## 5 34761.52 36049.99 37260.05 38501.47
## 6 1915590.38 2020157.01 2127714.45 2238203.87
## 7 2453817.78 2565644.81 2681525.25 2801692.62
## 8 15603661.36 16047814.69 16498633.27 16960827.93
## 9 1527985.34 1584758.18 1642098.95 1699470.87
## 10 77055.29 74596.06 71438.96 68179.26
Work that Excel data!
Now that you can read in Excel data, let’s try to clean and merge it. You already used the cbind() function some exercises ago. Let’s take it one step further now.
The urbanpop.xls dataset is available in your working directory. The file still contains three sheets, and has column names in the first row of each sheet.
# Import all sheets from urbanpop.xls
path <- "_data/urbanpop.xls"
urban_sheet1 <- read.xls(path, perl = perl_path, sheet = 1, stringsAsFactors = FALSE)
urban_sheet2 <- read.xls(path, perl = perl_path, sheet = 2, stringsAsFactors = FALSE)
urban_sheet3 <- read.xls(path, perl = perl_path, sheet = 3, stringsAsFactors = FALSE)
# Extend the cbind() call to include urban_sheet3: urban_all
urban <- cbind(urban_sheet1, urban_sheet2[-1], urban_sheet3[-1])
# Remove all rows with NAs from urban: urban_clean
urban_clean <- na.omit(urban)
# Print out a summary of urban_clean
summary(urban_clean)
## country X1960 X1961 X1962
## Length:197 Min. : 3378 Min. : 3433 Min. : 3481
## Class :character 1st Qu.: 87735 1st Qu.: 92905 1st Qu.: 98331
## Mode :character Median : 599714 Median : 630788 Median : 659464
## Mean : 5012388 Mean : 5282488 Mean : 5440972
## 3rd Qu.: 3130085 3rd Qu.: 3155370 3rd Qu.: 3250211
## Max. :126469700 Max. :129268133 Max. :131974143
## X1963 X1964 X1965
## Min. : 3532 Min. : 3586 Min. : 3644
## 1st Qu.: 104988 1st Qu.: 112084 1st Qu.: 119322
## Median : 704989 Median : 740609 Median : 774957
## Mean : 5612312 Mean : 5786961 Mean : 5964970
## 3rd Qu.: 3416490 3rd Qu.: 3585464 3rd Qu.: 3666724
## Max. :134599886 Max. :137205240 Max. :139663053
## X1966 X1967 X1968
## Min. : 3706 Min. : 3771 Min. : 3835
## 1st Qu.: 128565 1st Qu.: 138024 1st Qu.: 147846
## Median : 809768 Median : 838449 Median : 890270
## Mean : 6126413 Mean : 6288771 Mean : 6451367
## 3rd Qu.: 3871757 3rd Qu.: 4019906 3rd Qu.: 4158186
## Max. :141962708 Max. :144201722 Max. :146340364
## X1969 X1970 X1971
## Min. : 3893 Min. : 3941 Min. : 4017
## 1st Qu.: 158252 1st Qu.: 171063 1st Qu.: 181483
## Median : 929450 Median : 976471 Median : 1008630
## Mean : 6624909 Mean : 6799110 Mean : 6980895
## 3rd Qu.: 4300669 3rd Qu.: 4440047 3rd Qu.: 4595966
## Max. :148475901 Max. :150922373 Max. :152863831
## X1972 X1973 X1974
## Min. : 4084 Min. : 4146 Min. : 4206
## 1st Qu.: 189492 1st Qu.: 197792 1st Qu.: 205410
## Median : 1048738 Median : 1097293 Median : 1159402
## Mean : 7165338 Mean : 7349454 Mean : 7540446
## 3rd Qu.: 4766545 3rd Qu.: 4838297 3rd Qu.: 4906384
## Max. :154530473 Max. :156034106 Max. :157488074
## X1975 X1976 X1977
## Min. : 4267 Min. : 4334 Min. : 4402
## 1st Qu.: 211746 1st Qu.: 216991 1st Qu.: 222209
## Median : 1223146 Median : 1249829 Median : 1311276
## Mean : 7731973 Mean : 7936401 Mean : 8145945
## 3rd Qu.: 5003370 3rd Qu.: 5121118 3rd Qu.: 5227677
## Max. :159452730 Max. :165583752 Max. :171550310
## X1978 X1979 X1980
## Min. : 4470 Min. : 4539 Min. : 4607
## 1st Qu.: 227605 1st Qu.: 233461 1st Qu.: 242583
## Median : 1340811 Median : 1448185 Median : 1592397
## Mean : 8361360 Mean : 8583138 Mean : 8808772
## 3rd Qu.: 5352746 3rd Qu.: 5558850 3rd Qu.: 5815772
## Max. :177605736 Max. :183785364 Max. :189947471
## X1981 X1982 X1983
## Min. : 4645 Min. : 4681 Min. : 4716
## 1st Qu.: 248948 1st Qu.: 257944 1st Qu.: 274139
## Median : 1673079 Median : 1713060 Median : 1730626
## Mean : 9049163 Mean : 9295226 Mean : 9545035
## 3rd Qu.: 6070457 3rd Qu.: 6337995 3rd Qu.: 6619987
## Max. :199385258 Max. :209435968 Max. :219680098
## X1984 X1985 X1986
## Min. : 4750 Min. : 4782 Min. : 4809
## 1st Qu.: 284939 1st Qu.: 300928 1st Qu.: 307699
## Median : 1749033 Median : 1786125 Median : 1850910
## Mean : 9798559 Mean : 10058661 Mean : 10323839
## 3rd Qu.: 6918261 3rd Qu.: 6931780 3rd Qu.: 6935763
## Max. :229872397 Max. :240414890 Max. :251630158
## X1987 X1988 X1989
## Min. : 4835 Min. : 4859 Min. : 4883
## 1st Qu.: 321125 1st Qu.: 334616 1st Qu.: 347348
## Median : 1953694 Median : 1997011 Median : 1993544
## Mean : 10595817 Mean : 10873041 Mean : 11154458
## 3rd Qu.: 6939905 3rd Qu.: 6945022 3rd Qu.: 6885378
## Max. :263433513 Max. :275570541 Max. :287810747
## X1990 X1991 X1992
## Min. : 4907 Min. : 4946 Min. : 4985
## 1st Qu.: 370152 1st Qu.: 394611 1st Qu.: 418788
## Median : 2066505 Median : 2150230 Median : 2237405
## Mean : 11438543 Mean : 11725076 Mean : 12010922
## 3rd Qu.: 6830026 3rd Qu.: 6816589 3rd Qu.: 6820099
## Max. :300165618 Max. :314689997 Max. :329099365
## X1993 X1994 X1995
## Min. : 5024 Min. : 5062 Min. : 5100
## 1st Qu.: 427457 1st Qu.: 435959 1st Qu.: 461993
## Median : 2322158 Median : 2410297 Median : 2482393
## Mean : 12296949 Mean : 12582930 Mean : 12871480
## 3rd Qu.: 7139656 3rd Qu.: 7499901 3rd Qu.: 7708571
## Max. :343555327 Max. :358232230 Max. :373035157
## X1996 X1997 X1998
## Min. : 5079 Min. : 5055 Min. : 5029
## 1st Qu.: 488136 1st Qu.: 494203 1st Qu.: 498002
## Median : 2522460 Median : 2606125 Median : 2664983
## Mean : 13165924 Mean : 13463675 Mean : 13762861
## 3rd Qu.: 7686092 3rd Qu.: 7664316 3rd Qu.: 7784056
## Max. :388936607 Max. :405031716 Max. :421147610
## X1999 X2000 X2001
## Min. : 5001 Min. : 4971 Min. : 5003
## 1st Qu.: 505144 1st Qu.: 525629 1st Qu.: 550638
## Median : 2737809 Median : 2826647 Median : 2925851
## Mean : 14063387 Mean : 14369278 Mean : 14705743
## 3rd Qu.: 8083488 3rd Qu.: 8305564 3rd Qu.: 8421967
## Max. :437126845 Max. :452999147 Max. :473204511
## X2002 X2003 X2004
## Min. : 5034 Min. : 5064 Min. : 5090
## 1st Qu.: 567531 1st Qu.: 572094 1st Qu.: 593900
## Median : 2928252 Median : 2944934 Median : 2994356
## Mean : 15043381 Mean : 15384513 Mean : 15730299
## 3rd Qu.: 8448628 3rd Qu.: 8622732 3rd Qu.: 8999112
## Max. :493402140 Max. :513607776 Max. :533892175
## X2005 X2006 X2007
## Min. : 5111 Min. : 5135 Min. : 5155
## 1st Qu.: 620511 1st Qu.: 632659 1st Qu.: 645172
## Median : 3057923 Median : 3269963 Median : 3432024
## Mean : 16080262 Mean : 16435872 Mean : 16797484
## 3rd Qu.: 9394001 3rd Qu.: 9689807 3rd Qu.: 9803381
## Max. :554367818 Max. :575050081 Max. :595731464
## X2008 X2009 X2010
## Min. : 5172 Min. : 5189 Min. : 5206
## 1st Qu.: 658017 1st Qu.: 671085 1st Qu.: 684302
## Median : 3589395 Median : 3652338 Median : 3676309
## Mean : 17164898 Mean : 17533997 Mean : 17904811
## 3rd Qu.: 10210317 3rd Qu.: 10518289 3rd Qu.: 10618596
## Max. :616552722 Max. :637533976 Max. :658557734
## X2011
## Min. : 5233
## 1st Qu.: 698009
## Median : 3664664
## Mean : 18276297
## 3rd Qu.: 10731193
## Max. :678796403
Awesome! Time for something totally different: XLConnect
.
XLConnect
Installation
install.packages("XLConnect")
Connect to a workbook
When working with XLConnect
, the first step will be to load a workbook in your R session with loadWorkbook(); this function will build a “bridge” between your Excel file and your R session.
In this and the following exercises, you will continue to work with urbanpop.xlsx, containing urban population data throughout time. The Excel file is available in your current working directory.
# urbanpop.xlsx is available in your working directory
# Load the XLConnect package
library(XLConnect)
## XLConnect 1.0.1 by Mirai Solutions GmbH [aut],
## Martin Studer [cre],
## The Apache Software Foundation [ctb, cph] (Apache POI),
## Graph Builder [ctb, cph] (Curvesapi Java library)
## http://www.mirai-solutions.com
## https://github.com/miraisolutions/xlconnect
# Build connection to urbanpop.xlsx: my_book
my_book <- loadWorkbook("_data/urbanpop.xlsx")
# Print out the class of my_book
class(my_book)
## [1] "workbook"
## attr(,"package")
## [1] "XLConnect"
List and read Excel sheets
Just as readxl
and gdata
, you can use XLConnect
to import data from Excel file into R.
To list the sheets in an Excel file, use getSheets(). To actually import data from a sheet, you can use readWorksheet(). Both functions require an XLConnect workbook object as the first argument.
You’ll again be working with urbanpop.xlsx. The my_book
object that links to this Excel file has already been created.
# XLConnect is already available
# Build connection to urbanpop.xlsx
my_book <- loadWorkbook("_data/urbanpop.xlsx")
# List the sheets in my_book
getSheets(my_book)
## [1] "1960-1966" "1967-1974" "1975-2011"
# Import the second sheet in my_book
readWorksheet(my_book, sheet = 2)
## country X1967 X1968 X1969
## 1 Afghanistan 1.119067e+06 1.182159e+06 1.248901e+06
## 2 Albania 6.211798e+05 6.399645e+05 6.588531e+05
## 3 Algeria 4.826104e+06 5.017299e+06 5.219332e+06
## 4 American Samoa 1.734866e+04 1.799551e+04 1.861868e+04
## 5 Andorra 1.543962e+04 1.672699e+04 1.808832e+04
## 6 Angola 7.574963e+05 7.984593e+05 8.412620e+05
## 7 Antigua and Barbuda 2.208625e+04 2.214939e+04 2.218292e+04
## 8 Argentina 1.775328e+07 1.812410e+07 1.851046e+07
## 9 Armenia 1.337032e+06 1.392892e+06 1.449641e+06
## 10 Aruba 2.941472e+04 2.957609e+04 2.973787e+04
## 11 Australia 9.934404e+06 1.015397e+07 1.041239e+07
## 12 Austria 4.803149e+06 4.831817e+06 4.852208e+06
## 13 Azerbaijan 2.446990e+06 2.495725e+06 2.542062e+06
## 14 Bahamas 9.868390e+04 1.036697e+05 1.084730e+05
## 15 Bahrain 1.619616e+05 1.663785e+05 1.714590e+05
## 16 Bangladesh 4.173453e+06 4.484842e+06 4.790505e+06
## 17 Barbados 8.819371e+04 8.858041e+04 8.902489e+04
## 18 Belarus 3.556448e+06 3.696854e+06 3.838003e+06
## 19 Belgium 8.950504e+06 8.999366e+06 9.038506e+06
## 20 Belize 5.879024e+04 5.971173e+04 6.049220e+04
## 21 Benin 3.820221e+05 4.118595e+05 4.430131e+05
## 22 Bermuda 5.200000e+04 5.300000e+04 5.400000e+04
## 23 Bhutan 1.437897e+04 1.561689e+04 1.694642e+04
## 24 Bolivia 1.527065e+06 1.575177e+06 1.625173e+06
## 25 Bosnia and Herzegovina 8.516924e+05 8.902697e+05 9.294496e+05
## 26 Botswana 3.431976e+04 4.057616e+04 4.722223e+04
## 27 Brazil 4.719352e+07 4.931688e+07 5.148910e+07
## 28 Brunei 6.128905e+04 6.622218e+04 7.150276e+04
## 29 Bulgaria 4.019906e+06 4.158186e+06 4.300669e+06
## 30 Burkina Faso 2.968238e+05 3.086611e+05 3.209607e+05
## 31 Burundi 7.616560e+04 7.881625e+04 8.135573e+04
## 32 Cambodia 8.357562e+05 9.263155e+05 1.017799e+06
## 33 Cameroon 1.157892e+06 1.231243e+06 1.308158e+06
## 34 Canada 1.510423e+07 1.546449e+07 1.579236e+07
## 35 Cape Verde 4.724476e+04 4.923400e+04 5.135658e+04
## 36 Cayman Islands 8.875000e+03 9.002000e+03 9.216000e+03
## 37 Central African Republic 4.303721e+05 4.529338e+05 4.761054e+05
## 38 Chad 3.315042e+05 3.605791e+05 3.909776e+05
## 39 Channel Islands 4.329456e+04 4.344349e+04 4.358417e+04
## 40 Chile 6.606825e+06 6.805959e+06 7.005123e+06
## 41 China 1.343974e+08 1.368900e+08 1.396005e+08
## 42 Colombia 1.033119e+07 1.078053e+07 1.123560e+07
## 43 Comoros 3.978906e+04 4.183902e+04 4.396565e+04
## 44 Congo, Dem. Rep. 5.161472e+06 5.475208e+06 5.802069e+06
## 45 Congo, Rep. 4.506698e+05 4.733352e+05 4.972107e+05
## 46 Costa Rica 6.217858e+05 6.499164e+05 6.782539e+05
## 47 Cote d'Ivoire 1.243350e+06 1.330719e+06 1.424438e+06
## 48 Croatia 1.608233e+06 1.663051e+06 1.717607e+06
## 49 Cuba 4.927341e+06 5.032014e+06 5.137260e+06
## 50 Cyprus 2.319297e+05 2.378314e+05 2.439833e+05
## 51 Czech Republic 6.204410e+06 6.266305e+06 6.326369e+06
## 52 Denmark 3.777553e+06 3.826785e+06 3.874314e+06
## 53 Djibouti 7.778804e+04 8.469435e+04 9.204577e+04
## 54 Dominica 2.755036e+04 2.952732e+04 3.147562e+04
## 55 Dominican Republic 1.535485e+06 1.625456e+06 1.718315e+06
## 56 Ecuador 2.059355e+06 2.151395e+06 2.246891e+06
## 57 Egypt 1.379817e+07 1.424834e+07 1.470386e+07
## 58 El Salvador 1.345529e+06 1.387218e+06 1.429379e+06
## 59 Equatorial Guinea 7.536450e+04 7.729503e+04 7.844574e+04
## 60 Eritrea 2.025150e+05 2.121646e+05 2.221863e+05
## 61 Estonia 8.283882e+05 8.472205e+05 8.662579e+05
## 62 Ethiopia 2.139904e+06 2.249670e+06 2.365149e+06
## 63 Faeroe Islands 9.878976e+03 1.017780e+04 1.047732e+04
## 64 Fiji 1.632216e+05 1.690663e+05 1.749364e+05
## 65 Finland 2.822234e+06 2.872371e+06 2.908120e+06
## 66 France 3.486791e+07 3.554830e+07 3.622608e+07
## 67 French Polynesia 5.087720e+04 5.421077e+04 5.768190e+04
## 68 Gabon 1.380242e+05 1.478459e+05 1.582525e+05
## 69 Gambia 7.036836e+04 7.628527e+04 8.261546e+04
## 70 Georgia 1.863610e+06 1.900576e+06 1.938616e+06
## 71 Germany 5.546852e+07 5.576506e+07 5.625874e+07
## 72 Ghana 2.219604e+06 2.311442e+06 2.408851e+06
## 73 Greece 4.300274e+06 4.415310e+06 4.518763e+06
## 74 Greenland 2.879686e+04 3.040882e+04 3.206093e+04
## 75 Grenada 3.004680e+04 3.019593e+04 3.031077e+04
## 76 Guam 4.629560e+04 4.844571e+04 5.065242e+04
## 77 Guatemala 1.739459e+06 1.802725e+06 1.868309e+06
## 78 Guinea 5.618868e+05 5.962425e+05 6.304226e+05
## 79 Guinea-Bissau 8.719596e+04 8.804516e+04 8.932212e+04
## 80 Guyana 1.979563e+05 2.033071e+05 2.081042e+05
## 81 Haiti 8.205857e+05 8.567168e+05 8.934834e+05
## 82 Honduras 6.700552e+05 7.041621e+05 7.396318e+05
## 83 Hong Kong, China 3.236781e+06 3.316190e+06 3.379661e+06
## 84 Hungary 6.013289e+06 6.079237e+06 6.147720e+06
## 85 Iceland 1.661399e+05 1.693063e+05 1.717736e+05
## 86 India 9.936339e+07 1.025948e+08 1.059532e+08
## 87 Indonesia 1.786885e+07 1.862152e+07 1.940053e+07
## 88 Iran 1.024223e+07 1.074839e+07 1.127204e+07
## 89 Iraq 4.785700e+06 5.053788e+06 5.335012e+06
## 90 Ireland 1.448735e+06 1.472843e+06 1.499153e+06
## 91 Isle of Man 2.974060e+04 3.041582e+04 3.107182e+04
## 92 Israel 2.257543e+06 2.323491e+06 2.403561e+06
## 93 Italy 3.322924e+07 3.369844e+07 3.414982e+07
## 94 Jamaica 7.040407e+05 7.257254e+05 7.482876e+05
## 95 Japan 6.997406e+07 7.101819e+07 7.332929e+07
## 96 Jordan 7.024333e+05 7.513107e+05 7.991228e+05
## 97 Kazakhstan 6.018757e+06 6.209379e+06 6.396692e+06
## 98 Kenya 9.424282e+05 1.010199e+06 1.082085e+06
## 99 Kiribati 9.944575e+03 1.054187e+04 1.115324e+04
## 100 North Korea 6.359134e+06 6.797010e+06 7.252939e+06
## 101 South Korea 1.067144e+07 1.142358e+07 1.219746e+07
## 102 Kuwait 4.812897e+05 5.332849e+05 5.878232e+05
## 103 Kyrgyz Republic 9.987404e+05 1.037698e+06 1.075216e+06
## 104 Lao 2.214381e+05 2.333150e+05 2.458144e+05
## 105 Latvia 1.343553e+06 1.374667e+06 1.404423e+06
## 106 Lebanon 1.253621e+06 1.320402e+06 1.390579e+06
## 107 Lesotho 7.042371e+04 7.636722e+04 8.253367e+04
## 108 Liberia 3.145211e+05 3.336211e+05 3.536543e+05
## 109 Libya 7.048490e+05 7.933851e+05 8.884915e+05
## 110 Liechtenstein 3.771201e+03 3.835222e+03 3.893073e+03
## 111 Lithuania 1.415402e+06 1.462854e+06 1.508107e+06
## 112 Luxembourg 2.442931e+05 2.465394e+05 2.493815e+05
## 113 Macao, China 2.193452e+05 2.292781e+05 2.376078e+05
## 114 Macedonia, FYR 6.524718e+05 6.802103e+05 7.086757e+05
## 115 Madagascar 7.919615e+05 8.337642e+05 8.775250e+05
## 116 Malawi 2.242118e+05 2.398927e+05 2.565303e+05
## 117 Malaysia 3.168042e+06 3.324289e+06 3.484442e+06
## 118 Maldives 1.252289e+04 1.289746e+04 1.330701e+04
## 119 Mali 7.656009e+05 7.972307e+05 8.302079e+05
## 120 Malta 2.796928e+05 2.763384e+05 2.730307e+05
## 121 Marshall Islands 8.640897e+03 9.323270e+03 1.007123e+04
## 122 Mauritania 1.236419e+05 1.367608e+05 1.505604e+05
## 123 Mauritius 3.058232e+05 3.195152e+05 3.332923e+05
## 124 Mexico 2.691017e+07 2.808642e+07 2.931700e+07
## 125 Micronesia, Fed. Sts. 1.354285e+04 1.419170e+04 1.477304e+04
## 126 Moldova 8.569232e+05 8.959091e+05 9.356514e+05
## 127 Monaco 2.304600e+04 2.323400e+04 2.344800e+04
## 128 Mongolia 5.089148e+05 5.307544e+05 5.535133e+05
## 129 Montenegro 1.244879e+05 1.292181e+05 1.340713e+05
## 130 Morocco 4.639516e+06 4.848380e+06 5.061952e+06
## 131 Mozambique 4.491451e+05 4.803006e+05 5.127060e+05
## 132 Myanmar 5.297725e+06 5.512884e+06 5.737830e+06
## 133 Namibia 1.504638e+05 1.578102e+05 1.656184e+05
## 134 Nepal 4.268625e+05 4.411255e+05 4.559937e+05
## 135 Netherlands 7.699643e+06 7.803192e+06 7.917513e+06
## 136 New Caledonia 4.587712e+04 4.868702e+04 5.183153e+04
## 137 New Zealand 2.173205e+06 2.204526e+06 2.236624e+06
## 138 Nicaragua 9.730101e+05 1.022348e+06 1.073928e+06
## 139 Niger 3.039535e+05 3.295439e+05 3.563980e+05
## 140 Nigeria 1.131884e+07 1.186224e+07 1.242960e+07
## 141 Northern Mariana Islands 7.518953e+03 8.073316e+03 8.655527e+03
## 142 Norway 2.297185e+06 2.376327e+06 2.456007e+06
## 143 Oman 1.682955e+05 1.833677e+05 1.995581e+05
## 144 Pakistan 1.316562e+07 1.366756e+07 1.419101e+07
## 145 Palau 6.521346e+03 6.627161e+03 6.736073e+03
## 146 Panama 6.330562e+05 6.609825e+05 6.897512e+05
## 147 Papua New Guinea 1.626460e+05 1.865556e+05 2.117910e+05
## 148 Paraguay 8.397317e+05 8.662660e+05 8.931292e+05
## 149 Peru 6.560955e+06 6.884271e+06 7.220337e+06
## 150 Philippines 1.045064e+07 1.085199e+07 1.126489e+07
## 151 Poland 1.628965e+07 1.657536e+07 1.683567e+07
## 152 Portugal 3.340476e+06 3.360472e+06 3.364395e+06
## 153 Puerto Rico 1.435077e+06 1.480203e+06 1.529021e+06
## 154 Qatar 7.500451e+04 8.116982e+04 8.804065e+04
## 155 Romania 7.568698e+06 7.775433e+06 7.962558e+06
## 156 Russia 7.677947e+07 7.832602e+07 7.988771e+07
## 157 Rwanda 1.005126e+05 1.065866e+05 1.129610e+05
## 158 St. Kitts and Nevis 1.516557e+04 1.522598e+04 1.528050e+04
## 159 St. Lucia 2.232508e+04 2.291663e+04 2.351565e+04
## 160 St. Vincent and the Grenadines 2.564178e+04 2.633043e+04 2.703429e+04
## 161 Samoa 2.636036e+04 2.727841e+04 2.815593e+04
## 162 San Marino 1.030941e+04 1.071427e+04 1.109522e+04
## 163 Sao Tome and Principe 1.684635e+04 1.841719e+04 2.006490e+04
## 164 Saudi Arabia 2.195007e+06 2.382635e+06 2.586258e+06
## 165 Senegal 1.035987e+06 1.096955e+06 1.161241e+06
## 166 Serbia 2.505613e+06 2.595006e+06 2.683242e+06
## 167 Seychelles 1.771880e+04 1.876104e+04 1.983538e+04
## 168 Sierra Leone 5.281695e+05 5.535685e+05 5.797787e+05
## 169 Singapore 1.978000e+06 2.012000e+06 2.043000e+06
## 170 Slovak Republic 1.719618e+06 1.768967e+06 1.818929e+06
## 171 Slovenia 5.795047e+05 6.000206e+05 6.187531e+05
## 172 Solomon Islands 1.151482e+04 1.237527e+04 1.329659e+04
## 173 Somalia 7.047038e+05 7.433007e+05 7.810217e+05
## 174 South Africa 9.830232e+06 1.006591e+07 1.030848e+07
## 175 Spain 2.064974e+07 2.123678e+07 2.176544e+07
## 176 Sri Lanka 2.151152e+06 2.249555e+06 2.344592e+06
## 177 Sudan 1.466502e+06 1.571927e+06 1.683562e+06
## 178 Suriname 1.638993e+05 1.673102e+05 1.698198e+05
## 179 Swaziland 3.199762e+04 3.554773e+04 3.929612e+04
## 180 Sweden 6.187907e+06 6.285731e+06 6.393453e+06
## 181 Switzerland 3.324087e+06 3.404449e+06 3.481651e+06
## 182 Syria 2.377889e+06 2.499429e+06 2.626816e+06
## 183 Tajikistan 9.611929e+05 1.000669e+06 1.041608e+06
## 184 Tanzania 8.384494e+05 9.108258e+05 9.872961e+05
## 185 Thailand 6.919690e+06 7.176231e+06 7.440174e+06
## 186 Timor-Leste 6.802067e+04 7.108209e+04 7.435281e+04
## 187 Togo 3.221940e+05 3.621139e+05 4.040164e+05
## 188 Tonga 1.563131e+04 1.614767e+04 1.661674e+04
## 189 Trinidad and Tobago 1.232921e+05 1.208498e+05 1.181071e+05
## 190 Tunisia 1.992479e+06 2.070869e+06 2.149857e+06
## 191 Turkey 1.191986e+07 1.244807e+07 1.299329e+07
## 192 Turkmenistan 9.517698e+05 9.822601e+05 1.013434e+06
## 193 Turks and Caicos Islands 2.798837e+03 2.804887e+03 2.829033e+03
## 194 Tuvalu 1.415014e+03 1.480186e+03 1.545270e+03
## 195 Uganda 5.120829e+05 5.499091e+05 5.891064e+05
## 196 Ukraine 2.416635e+07 2.475757e+07 2.534887e+07
## 197 United Arab Emirates 1.280378e+05 1.390527e+05 1.555970e+05
## 198 United Kingdom 4.260294e+07 4.273308e+07 4.283308e+07
## 199 United States 1.442017e+08 1.463404e+08 1.484759e+08
## 200 Uruguay 2.247503e+06 2.273438e+06 2.295858e+06
## 201 Uzbekistan 3.913188e+06 4.067599e+06 4.227790e+06
## 202 Vanuatu 9.208354e+03 9.621427e+03 1.005774e+04
## 203 Venezuela 6.678933e+06 6.994264e+06 7.324840e+06
## 204 Vietnam 6.865532e+06 7.169607e+06 7.487421e+06
## 205 Virgin Islands (U.S.) 3.342853e+04 3.661847e+04 4.004103e+04
## 206 Yemen 6.973814e+05 7.369436e+05 7.769681e+05
## 207 Zambia 9.841980e+05 1.069557e+06 1.160044e+06
## 208 Zimbabwe 7.416051e+05 7.927728e+05 8.467739e+05
## 209 South Sudan 3.157901e+05 3.210970e+05 3.268101e+05
## X1970 X1971 X1972 X1973 X1974
## 1 1.319849e+06 1.409001e+06 1.502402e+06 1.598835e+06 1.696445e+06
## 2 6.778391e+05 6.989322e+05 7.202066e+05 7.416810e+05 7.633855e+05
## 3 5.429743e+06 5.619042e+06 5.815734e+06 6.020647e+06 6.235114e+06
## 4 1.920639e+04 1.975202e+04 2.026267e+04 2.074197e+04 2.119438e+04
## 5 1.952896e+04 2.092873e+04 2.240584e+04 2.393705e+04 2.548198e+04
## 6 8.864016e+05 9.550101e+05 1.027397e+06 1.103830e+06 1.184486e+06
## 7 2.218087e+04 2.256087e+04 2.290776e+04 2.322129e+04 2.350292e+04
## 8 1.891807e+07 1.932972e+07 1.976308e+07 2.021142e+07 2.066473e+07
## 9 1.507620e+06 1.564368e+06 1.622104e+06 1.680498e+06 1.739063e+06
## 10 2.990157e+04 3.008136e+04 3.027976e+04 3.046742e+04 3.060287e+04
## 11 1.066409e+07 1.104771e+07 1.126995e+07 1.146112e+07 1.177293e+07
## 12 4.872871e+06 4.895910e+06 4.925699e+06 4.954325e+06 4.964026e+06
## 13 2.586413e+06 2.660993e+06 2.734825e+06 2.807955e+06 2.880447e+06
## 14 1.130101e+05 1.171566e+05 1.209989e+05 1.246644e+05 1.283499e+05
## 15 1.775008e+05 1.844398e+05 1.923163e+05 2.014935e+05 2.124162e+05
## 16 5.078286e+06 5.456170e+06 5.812548e+06 6.161815e+06 6.530579e+06
## 17 8.956543e+04 9.055245e+04 9.164208e+04 9.277639e+04 9.387156e+04
## 18 3.978504e+06 4.132164e+06 4.286801e+06 4.440936e+06 4.592935e+06
## 19 9.061057e+06 9.089909e+06 9.137946e+06 9.179155e+06 9.220531e+06
## 20 6.114133e+04 6.183991e+04 6.240329e+04 6.294338e+04 6.362671e+04
## 21 4.756114e+05 5.158195e+05 5.579376e+05 6.020932e+05 6.484097e+05
## 22 5.500000e+04 5.460000e+04 5.420000e+04 5.380000e+04 5.340000e+04
## 23 1.838141e+04 2.017266e+04 2.209976e+04 2.415974e+04 2.634254e+04
## 24 1.677184e+06 1.731437e+06 1.787719e+06 1.845894e+06 1.905749e+06
## 25 9.695495e+05 1.008630e+06 1.048738e+06 1.089648e+06 1.130966e+06
## 26 5.428641e+04 6.186900e+04 6.992963e+04 7.852997e+04 8.775392e+04
## 27 5.371642e+07 5.600051e+07 5.834048e+07 6.074473e+07 6.322438e+07
## 28 7.714802e+04 8.088400e+04 8.478142e+04 8.880798e+04 9.291945e+04
## 29 4.440047e+06 4.554372e+06 4.665864e+06 4.780947e+06 4.904324e+06
## 30 3.336985e+05 3.475107e+05 3.618362e+05 3.767243e+05 3.922410e+05
## 31 8.369155e+04 9.049313e+04 9.717071e+04 1.038732e+05 1.108747e+05
## 32 1.107998e+06 9.614523e+05 8.076237e+05 6.470452e+05 4.811320e+05
## 33 1.388878e+06 1.523689e+06 1.665342e+06 1.814545e+06 1.972201e+06
## 34 1.613246e+07 1.637385e+07 1.663528e+07 1.691758e+07 1.722167e+07
## 35 5.364682e+04 5.638241e+04 5.931521e+04 6.221562e+04 6.475257e+04
## 36 9.545000e+03 1.000400e+04 1.058100e+04 1.125300e+04 1.199000e+04
## 37 4.997496e+05 5.268630e+05 5.546158e+05 5.832534e+05 6.131560e+05
## 38 4.229151e+05 4.628673e+05 5.049060e+05 5.488032e+05 5.940966e+05
## 39 4.371195e+04 4.368323e+04 4.363962e+04 4.355859e+04 4.341204e+04
## 40 7.204920e+06 7.398470e+06 7.592419e+06 7.785880e+06 7.977602e+06
## 41 1.423868e+08 1.463523e+08 1.499932e+08 1.534576e+08 1.566609e+08
## 42 1.169300e+07 1.214719e+07 1.260270e+07 1.306371e+07 1.353659e+07
## 43 4.615440e+04 4.811136e+04 5.012270e+04 5.227286e+04 5.468356e+04
## 44 6.140904e+06 6.282834e+06 6.425372e+06 6.570538e+06 6.721175e+06
## 45 5.224066e+05 5.497894e+05 5.786398e+05 6.088504e+05 6.402364e+05
## 46 7.067986e+05 7.335459e+05 7.604308e+05 7.879183e+05 8.166588e+05
## 47 1.525425e+06 1.638738e+06 1.760508e+06 1.891241e+06 2.031395e+06
## 48 1.773046e+06 1.826422e+06 1.879428e+06 1.932436e+06 1.984976e+06
## 49 5.244279e+06 5.407254e+06 5.572975e+06 5.738231e+06 5.898512e+06
## 50 2.501645e+05 2.612132e+05 2.724080e+05 2.837749e+05 2.953798e+05
## 51 6.348795e+06 6.437055e+06 6.572632e+06 6.718466e+06 6.873458e+06
## 52 3.930043e+06 3.981360e+06 4.028248e+06 4.076867e+06 4.120201e+06
## 53 9.984522e+04 1.077997e+05 1.160982e+05 1.253916e+05 1.366062e+05
## 54 3.332825e+04 3.476152e+04 3.604999e+04 3.726005e+04 3.850147e+04
## 55 1.814060e+06 1.915590e+06 2.020157e+06 2.127714e+06 2.238204e+06
## 56 2.345864e+06 2.453818e+06 2.565645e+06 2.681525e+06 2.801693e+06
## 57 1.516286e+07 1.560366e+07 1.604781e+07 1.649863e+07 1.696083e+07
## 58 1.472181e+06 1.527985e+06 1.584758e+06 1.642099e+06 1.699471e+06
## 59 7.841107e+04 7.705529e+04 7.459606e+04 7.143896e+04 6.817926e+04
## 60 2.325927e+05 2.420318e+05 2.517894e+05 2.620127e+05 2.729047e+05
## 61 8.847697e+05 9.015668e+05 9.191148e+05 9.354101e+05 9.510326e+05
## 62 2.487032e+06 2.609266e+06 2.738496e+06 2.870320e+06 2.998291e+06
## 63 1.077427e+04 1.106567e+04 1.135462e+04 1.164494e+04 1.194279e+04
## 64 1.809345e+05 1.868715e+05 1.929448e+05 1.991372e+05 2.054102e+05
## 65 2.934402e+06 2.976176e+06 3.032239e+06 3.088022e+06 3.142947e+06
## 66 3.691751e+07 3.740758e+07 3.790747e+07 3.840573e+07 3.888504e+07
## 67 6.125900e+04 6.368624e+04 6.613374e+04 6.861999e+04 7.117748e+04
## 68 1.694483e+05 1.845557e+05 2.007952e+05 2.181618e+05 2.365466e+05
## 69 8.942094e+04 9.676352e+04 1.047188e+05 1.132281e+05 1.221660e+05
## 70 1.904782e+06 1.943501e+06 2.058124e+06 2.096168e+06 2.134461e+06
## 71 5.649607e+07 5.664462e+07 5.696131e+07 5.718614e+07 5.725360e+07
## 72 2.515296e+06 2.601135e+06 2.695926e+06 2.795186e+06 2.892229e+06
## 73 4.616575e+06 4.686154e+06 4.766545e+06 4.838297e+06 4.906384e+06
## 74 3.375322e+04 3.449046e+04 3.545317e+04 3.612819e+04 3.665970e+04
## 75 3.040587e+04 3.039084e+04 3.037836e+04 3.034479e+04 3.025489e+04
## 76 5.291621e+04 5.791466e+04 6.308539e+04 6.843879e+04 7.399464e+04
## 77 1.936380e+06 2.002850e+06 2.071676e+06 2.142378e+06 2.214270e+06
## 78 6.636291e+05 7.000651e+05 7.353800e+05 7.696670e+05 8.032624e+05
## 79 9.123325e+04 9.389158e+04 9.722136e+04 1.011893e+05 1.057146e+05
## 80 2.120772e+05 2.155336e+05 2.181112e+05 2.201426e+05 2.221226e+05
## 81 9.307198e+05 9.535772e+05 9.764460e+05 9.996672e+05 1.023722e+06
## 82 7.769459e+05 8.163257e+05 8.577454e+05 9.014120e+05 9.475283e+05
## 83 3.473191e+06 3.564807e+06 3.650021e+06 3.771147e+06 3.870519e+06
## 84 6.214324e+06 6.276071e+06 6.338877e+06 6.403550e+06 6.476603e+06
## 85 1.735679e+05 1.757064e+05 1.790372e+05 1.825107e+05 1.857581e+05
## 86 1.094455e+08 1.137519e+08 1.182288e+08 1.228790e+08 1.277043e+08
## 87 2.020553e+07 2.127053e+07 2.237329e+07 2.351361e+07 2.469105e+07
## 88 1.181219e+07 1.239191e+07 1.299286e+07 1.362195e+07 1.428880e+07
## 89 5.627633e+06 5.924798e+06 6.232252e+06 6.551369e+06 6.884387e+06
## 90 1.529549e+06 1.558990e+06 1.593945e+06 1.631517e+06 1.670769e+06
## 91 3.166567e+04 3.182827e+04 3.189547e+04 3.190477e+04 3.190731e+04
## 92 2.503959e+06 2.598970e+06 2.681284e+06 2.808059e+06 2.909400e+06
## 93 3.459238e+07 3.490238e+07 3.525021e+07 3.564021e+07 3.602531e+07
## 94 7.723456e+05 7.935444e+05 8.162612e+05 8.398898e+05 8.633533e+05
## 95 7.500006e+07 7.678337e+07 7.868950e+07 8.017343e+07 8.256444e+07
## 96 8.440427e+05 8.861825e+05 9.252900e+05 9.628976e+05 1.001686e+06
## 97 6.585936e+06 6.756162e+06 6.928193e+06 7.100036e+06 7.268241e+06
## 98 1.158426e+06 1.261182e+06 1.370525e+06 1.486815e+06 1.610388e+06
## 99 1.177903e+04 1.253191e+04 1.329569e+04 1.407663e+04 1.488213e+04
## 100 7.721750e+06 8.009574e+06 8.299056e+06 8.584095e+06 8.857069e+06
## 101 1.299394e+07 1.374559e+07 1.451567e+07 1.530510e+07 1.611498e+07
## 102 6.451490e+05 7.009110e+05 7.585954e+05 8.180756e+05 8.792009e+05
## 103 1.108956e+06 1.136687e+06 1.165919e+06 1.195227e+06 1.226436e+06
## 104 2.590287e+05 2.739823e+05 2.898053e+05 3.060341e+05 3.219629e+05
## 105 1.432319e+06 1.459146e+06 1.487488e+06 1.516637e+06 1.546838e+06
## 106 1.465634e+06 1.541721e+06 1.622874e+06 1.705275e+06 1.783166e+06
## 107 8.892443e+04 9.542557e+04 1.021606e+05 1.091860e+05 1.165855e+05
## 108 3.746759e+05 3.980213e+05 4.225051e+05 4.482161e+05 4.752605e+05
## 109 9.904397e+05 1.087657e+06 1.191671e+06 1.302852e+06 1.421573e+06
## 110 3.941192e+03 4.016945e+03 4.084375e+03 4.146087e+03 4.206141e+03
## 111 1.555873e+06 1.614349e+06 1.671308e+06 1.727112e+06 1.782930e+06
## 112 2.522550e+05 2.566740e+05 2.618327e+05 2.667899e+05 2.723674e+05
## 113 2.435455e+05 2.467800e+05 2.476067e+05 2.466418e+05 2.448335e+05
## 114 7.381837e+05 7.584522e+05 7.793806e+05 8.010906e+05 8.237298e+05
## 115 9.233980e+05 9.783692e+05 1.035964e+06 1.096280e+06 1.159402e+06
## 116 2.742784e+05 2.974752e+05 3.221866e+05 3.484584e+05 3.762949e+05
## 117 3.649615e+06 3.835042e+06 4.026657e+06 4.224277e+06 4.427442e+06
## 118 1.376876e+04 1.548045e+04 1.732799e+04 1.930163e+04 2.137255e+04
## 119 8.646754e+05 9.031346e+05 9.433393e+05 9.851630e+05 1.028372e+06
## 120 2.714740e+05 2.715449e+05 2.713466e+05 2.711483e+05 2.709913e+05
## 121 1.091076e+04 1.170290e+04 1.258814e+04 1.354212e+04 1.452511e+04
## 122 1.650886e+05 1.839591e+05 2.038400e+05 2.247698e+05 2.467774e+05
## 123 3.471843e+05 3.551136e+05 3.629438e+05 3.708224e+05 3.789698e+05
## 124 3.061321e+07 3.194150e+07 3.333305e+07 3.478046e+07 3.627178e+07
## 125 1.523980e+04 1.553743e+04 1.571629e+04 1.584482e+04 1.602333e+04
## 126 9.764706e+05 1.015915e+06 1.056411e+06 1.097293e+06 1.137827e+06
## 127 2.368900e+04 2.396800e+04 2.428200e+04 2.460500e+04 2.490200e+04
## 128 5.773571e+05 6.041172e+05 6.320703e+05 6.610724e+05 6.908953e+05
## 129 1.392938e+05 1.454891e+05 1.521163e+05 1.591069e+05 1.663149e+05
## 130 5.278427e+06 5.516718e+06 5.759042e+06 6.006727e+06 6.261899e+06
## 131 5.464057e+05 6.150199e+05 6.864334e+05 7.611387e+05 8.399119e+05
## 132 5.973271e+06 6.178716e+06 6.392781e+06 6.613581e+06 6.838424e+06
## 133 1.739636e+05 1.814829e+05 1.894921e+05 1.977924e+05 2.060961e+05
## 134 4.714710e+05 5.035432e+05 5.369944e+05 5.718580e+05 6.081574e+05
## 135 8.039946e+06 8.176234e+06 8.299848e+06 8.409656e+06 8.516996e+06
## 136 5.533056e+04 5.909833e+04 6.291106e+04 6.663068e+04 7.014487e+04
## 137 2.279646e+06 2.323472e+06 2.374612e+06 2.431429e+06 2.492750e+06
## 138 1.127855e+06 1.171246e+06 1.216288e+06 1.263026e+06 1.311513e+06
## 139 3.845578e+05 4.198226e+05 4.568167e+05 4.956246e+05 5.363483e+05
## 140 1.302354e+07 1.367088e+07 1.434773e+07 1.506111e+07 1.582041e+07
## 141 9.250286e+03 9.855667e+03 1.050168e+04 1.115197e+04 1.175108e+04
## 142 2.534594e+06 2.574218e+06 2.615935e+06 2.656406e+06 2.695182e+06
## 143 2.170597e+05 2.378383e+05 2.603733e+05 2.850917e+05 3.125531e+05
## 144 1.473699e+07 1.533278e+07 1.595552e+07 1.661011e+07 1.730286e+07
## 145 6.855879e+03 6.993553e+03 7.145486e+03 7.295512e+03 7.421072e+03
## 146 7.192792e+05 7.438996e+05 7.689286e+05 7.943853e+05 8.203103e+05
## 147 2.385030e+05 2.558776e+05 2.743358e+05 2.938021e+05 3.141259e+05
## 148 9.201416e+05 9.528178e+05 9.860213e+05 1.020057e+06 1.055359e+06
## 149 7.570234e+06 7.894058e+06 8.229659e+06 8.577138e+06 8.936488e+06
## 150 1.169151e+07 1.222076e+07 1.276980e+07 1.333929e+07 1.392968e+07
## 151 1.702627e+07 1.729526e+07 1.764742e+07 1.801889e+07 1.840518e+07
## 152 3.368354e+06 3.388266e+06 3.417132e+06 3.452290e+06 3.535363e+06
## 153 1.585301e+06 1.635614e+06 1.693250e+06 1.755806e+06 1.818827e+06
## 154 9.580697e+04 1.046010e+05 1.144858e+05 1.249279e+05 1.351680e+05
## 155 8.164758e+06 8.352698e+06 8.536653e+06 8.714774e+06 8.901463e+06
## 156 8.146468e+07 8.297123e+07 8.449242e+07 8.602837e+07 8.757920e+07
## 157 1.196576e+05 1.296515e+05 1.401857e+05 1.513041e+05 1.630587e+05
## 158 1.532931e+04 1.530592e+04 1.531596e+04 1.529062e+04 1.526421e+04
## 159 2.424170e+04 2.484224e+04 2.542559e+04 2.606504e+04 2.668730e+04
## 160 2.775738e+04 2.852298e+04 2.931059e+04 3.011692e+04 3.093551e+04
## 161 2.897331e+04 2.960049e+04 3.015656e+04 3.065566e+04 3.112000e+04
## 162 1.144333e+04 1.199178e+04 1.250465e+04 1.300464e+04 1.352865e+04
## 163 2.173410e+04 2.255666e+04 2.335055e+04 2.415061e+04 2.501460e+04
## 164 2.809100e+06 3.050817e+06 3.315971e+06 3.607779e+06 3.929807e+06
## 165 1.228874e+06 1.300559e+06 1.375866e+06 1.453826e+06 1.533013e+06
## 166 2.770952e+06 2.834711e+06 2.898614e+06 2.962223e+06 3.025922e+06
## 167 2.094045e+04 2.221236e+04 2.351875e+04 2.485369e+04 2.620824e+04
## 168 6.067908e+05 6.355432e+05 6.652061e+05 6.959255e+05 7.279029e+05
## 169 2.075000e+06 2.113000e+06 2.152000e+06 2.193000e+06 2.230000e+06
## 170 1.863258e+06 1.918549e+06 1.982845e+06 2.050451e+06 2.120507e+06
## 171 6.382787e+05 6.619232e+05 6.860343e+05 7.106715e+05 7.335425e+05
## 172 1.429003e+04 1.487728e+04 1.550905e+04 1.617813e+04 1.687314e+04
## 173 8.166815e+05 8.475888e+05 8.745210e+05 9.078108e+05 9.626845e+05
## 174 1.055957e+07 1.081953e+07 1.108419e+07 1.135223e+07 1.162297e+07
## 175 2.233044e+07 2.282103e+07 2.327235e+07 2.373034e+07 2.420854e+07
## 176 2.441982e+06 2.475540e+06 2.508101e+06 2.552143e+06 2.588945e+06
## 177 1.802344e+06 1.912728e+06 2.030472e+06 2.155450e+06 2.287267e+06
## 178 1.710630e+05 1.743836e+05 1.764727e+05 1.777444e+05 1.788532e+05
## 179 4.325858e+04 4.845133e+04 5.395107e+04 5.977098e+04 6.591935e+04
## 180 6.517403e+06 6.589874e+06 6.636926e+06 6.675974e+06 6.723052e+06
## 181 3.545846e+06 3.564515e+06 3.591810e+06 3.618437e+06 3.637988e+06
## 182 2.760217e+06 2.878588e+06 3.002034e+06 3.130344e+06 3.263171e+06
## 183 1.084708e+06 1.111673e+06 1.139645e+06 1.168044e+06 1.196054e+06
## 184 1.068227e+06 1.195298e+06 1.330036e+06 1.472583e+06 1.622882e+06
## 185 7.711257e+06 8.156822e+06 8.618420e+06 9.093762e+06 9.579568e+06
## 186 7.788066e+04 8.202655e+04 8.651331e+04 9.088243e+04 9.445747e+04
## 187 4.462997e+05 4.679159e+05 4.881497e+05 5.073627e+05 5.262916e+05
## 188 1.703157e+04 1.728917e+04 1.748268e+04 1.763734e+04 1.779015e+04
## 189 1.149191e+05 1.151237e+05 1.150568e+05 1.148504e+05 1.146878e+05
## 190 2.229322e+06 2.307379e+06 2.389032e+06 2.475875e+06 2.569238e+06
## 191 1.355938e+07 1.410119e+07 1.466411e+07 1.524684e+07 1.584676e+07
## 192 1.045665e+06 1.075185e+06 1.105506e+06 1.136380e+06 1.167443e+06
## 193 2.878290e+03 2.961101e+03 3.073893e+03 3.205822e+03 3.342540e+03
## 194 1.611030e+03 1.683666e+03 1.756818e+03 1.830905e+03 1.905153e+03
## 195 6.294769e+05 6.557359e+05 6.822662e+05 7.093838e+05 7.375558e+05
## 196 2.594411e+07 2.648578e+07 2.703029e+07 2.757233e+07 2.810411e+07
## 197 1.800752e+05 2.128010e+05 2.533435e+05 3.021131e+05 3.593418e+05
## 198 4.292583e+07 4.316876e+07 4.337887e+07 4.352637e+07 4.361748e+07
## 199 1.509224e+08 1.528638e+08 1.545305e+08 1.560341e+08 1.574881e+08
## 200 2.313813e+06 2.326524e+06 2.334879e+06 2.341153e+06 2.348533e+06
## 201 4.395765e+06 4.595966e+06 4.805551e+06 5.022305e+06 5.242853e+06
## 202 1.052469e+04 1.103796e+04 1.158368e+04 1.215890e+04 1.275908e+04
## 203 7.674281e+06 8.023652e+06 8.391094e+06 8.777606e+06 9.184011e+06
## 204 7.819407e+06 8.043735e+06 8.277023e+06 8.518466e+06 8.766839e+06
## 205 4.384296e+04 5.021305e+04 5.460843e+04 6.130639e+04 6.670296e+04
## 206 8.172839e+05 8.485446e+05 8.800627e+05 9.133326e+05 9.504883e+05
## 207 1.256178e+06 1.337898e+06 1.424498e+06 1.515871e+06 1.611725e+06
## 208 9.039055e+05 9.620288e+05 1.023588e+06 1.088377e+06 1.155992e+06
## 209 3.330133e+05 3.396491e+05 3.466912e+05 3.542318e+05 3.623528e+05
Customize readWorksheet
To get a clear overview about urbanpop.xlsx without having to open up the Excel file, you can execute the following code:
my_book <- loadWorkbook("urbanpop.xlsx")
sheets <- getSheets(my_book)
all <- lapply(sheets, readWorksheet, object = my_book)
str(all)
Suppose we’re only interested in urban population data of the years 1968, 1969 and 1970. The data for these years is in the columns 3, 4, and 5 of the second sheet. Only selecting these columns will leave us in the dark about the actual countries the figures belong to.
# XLConnect is already available
# Build connection to urbanpop.xlsx
my_book <- loadWorkbook("_data/urbanpop.xlsx")
# Import columns 3, 4, and 5 from second sheet in my_book: urbanpop_sel
urbanpop_sel <- readWorksheet(my_book, sheet = 2, startCol = 3, endCol = 5)
# Import first column from second sheet in my_book: countries
countries <- readWorksheet(my_book, sheet = 2, startCol = 1, endCol = 1)
# cbind() urbanpop_sel and countries together: selection
selection <- cbind(countries, urbanpop_sel)
selection
## country X1968 X1969 X1970
## 1 Afghanistan 1.182159e+06 1.248901e+06 1.319849e+06
## 2 Albania 6.399645e+05 6.588531e+05 6.778391e+05
## 3 Algeria 5.017299e+06 5.219332e+06 5.429743e+06
## 4 American Samoa 1.799551e+04 1.861868e+04 1.920639e+04
## 5 Andorra 1.672699e+04 1.808832e+04 1.952896e+04
## 6 Angola 7.984593e+05 8.412620e+05 8.864016e+05
## 7 Antigua and Barbuda 2.214939e+04 2.218292e+04 2.218087e+04
## 8 Argentina 1.812410e+07 1.851046e+07 1.891807e+07
## 9 Armenia 1.392892e+06 1.449641e+06 1.507620e+06
## 10 Aruba 2.957609e+04 2.973787e+04 2.990157e+04
## 11 Australia 1.015397e+07 1.041239e+07 1.066409e+07
## 12 Austria 4.831817e+06 4.852208e+06 4.872871e+06
## 13 Azerbaijan 2.495725e+06 2.542062e+06 2.586413e+06
## 14 Bahamas 1.036697e+05 1.084730e+05 1.130101e+05
## 15 Bahrain 1.663785e+05 1.714590e+05 1.775008e+05
## 16 Bangladesh 4.484842e+06 4.790505e+06 5.078286e+06
## 17 Barbados 8.858041e+04 8.902489e+04 8.956543e+04
## 18 Belarus 3.696854e+06 3.838003e+06 3.978504e+06
## 19 Belgium 8.999366e+06 9.038506e+06 9.061057e+06
## 20 Belize 5.971173e+04 6.049220e+04 6.114133e+04
## 21 Benin 4.118595e+05 4.430131e+05 4.756114e+05
## 22 Bermuda 5.300000e+04 5.400000e+04 5.500000e+04
## 23 Bhutan 1.561689e+04 1.694642e+04 1.838141e+04
## 24 Bolivia 1.575177e+06 1.625173e+06 1.677184e+06
## 25 Bosnia and Herzegovina 8.902697e+05 9.294496e+05 9.695495e+05
## 26 Botswana 4.057616e+04 4.722223e+04 5.428641e+04
## 27 Brazil 4.931688e+07 5.148910e+07 5.371642e+07
## 28 Brunei 6.622218e+04 7.150276e+04 7.714802e+04
## 29 Bulgaria 4.158186e+06 4.300669e+06 4.440047e+06
## 30 Burkina Faso 3.086611e+05 3.209607e+05 3.336985e+05
## 31 Burundi 7.881625e+04 8.135573e+04 8.369155e+04
## 32 Cambodia 9.263155e+05 1.017799e+06 1.107998e+06
## 33 Cameroon 1.231243e+06 1.308158e+06 1.388878e+06
## 34 Canada 1.546449e+07 1.579236e+07 1.613246e+07
## 35 Cape Verde 4.923400e+04 5.135658e+04 5.364682e+04
## 36 Cayman Islands 9.002000e+03 9.216000e+03 9.545000e+03
## 37 Central African Republic 4.529338e+05 4.761054e+05 4.997496e+05
## 38 Chad 3.605791e+05 3.909776e+05 4.229151e+05
## 39 Channel Islands 4.344349e+04 4.358417e+04 4.371195e+04
## 40 Chile 6.805959e+06 7.005123e+06 7.204920e+06
## 41 China 1.368900e+08 1.396005e+08 1.423868e+08
## 42 Colombia 1.078053e+07 1.123560e+07 1.169300e+07
## 43 Comoros 4.183902e+04 4.396565e+04 4.615440e+04
## 44 Congo, Dem. Rep. 5.475208e+06 5.802069e+06 6.140904e+06
## 45 Congo, Rep. 4.733352e+05 4.972107e+05 5.224066e+05
## 46 Costa Rica 6.499164e+05 6.782539e+05 7.067986e+05
## 47 Cote d'Ivoire 1.330719e+06 1.424438e+06 1.525425e+06
## 48 Croatia 1.663051e+06 1.717607e+06 1.773046e+06
## 49 Cuba 5.032014e+06 5.137260e+06 5.244279e+06
## 50 Cyprus 2.378314e+05 2.439833e+05 2.501645e+05
## 51 Czech Republic 6.266305e+06 6.326369e+06 6.348795e+06
## 52 Denmark 3.826785e+06 3.874314e+06 3.930043e+06
## 53 Djibouti 8.469435e+04 9.204577e+04 9.984522e+04
## 54 Dominica 2.952732e+04 3.147562e+04 3.332825e+04
## 55 Dominican Republic 1.625456e+06 1.718315e+06 1.814060e+06
## 56 Ecuador 2.151395e+06 2.246891e+06 2.345864e+06
## 57 Egypt 1.424834e+07 1.470386e+07 1.516286e+07
## 58 El Salvador 1.387218e+06 1.429379e+06 1.472181e+06
## 59 Equatorial Guinea 7.729503e+04 7.844574e+04 7.841107e+04
## 60 Eritrea 2.121646e+05 2.221863e+05 2.325927e+05
## 61 Estonia 8.472205e+05 8.662579e+05 8.847697e+05
## 62 Ethiopia 2.249670e+06 2.365149e+06 2.487032e+06
## 63 Faeroe Islands 1.017780e+04 1.047732e+04 1.077427e+04
## 64 Fiji 1.690663e+05 1.749364e+05 1.809345e+05
## 65 Finland 2.872371e+06 2.908120e+06 2.934402e+06
## 66 France 3.554830e+07 3.622608e+07 3.691751e+07
## 67 French Polynesia 5.421077e+04 5.768190e+04 6.125900e+04
## 68 Gabon 1.478459e+05 1.582525e+05 1.694483e+05
## 69 Gambia 7.628527e+04 8.261546e+04 8.942094e+04
## 70 Georgia 1.900576e+06 1.938616e+06 1.904782e+06
## 71 Germany 5.576506e+07 5.625874e+07 5.649607e+07
## 72 Ghana 2.311442e+06 2.408851e+06 2.515296e+06
## 73 Greece 4.415310e+06 4.518763e+06 4.616575e+06
## 74 Greenland 3.040882e+04 3.206093e+04 3.375322e+04
## 75 Grenada 3.019593e+04 3.031077e+04 3.040587e+04
## 76 Guam 4.844571e+04 5.065242e+04 5.291621e+04
## 77 Guatemala 1.802725e+06 1.868309e+06 1.936380e+06
## 78 Guinea 5.962425e+05 6.304226e+05 6.636291e+05
## 79 Guinea-Bissau 8.804516e+04 8.932212e+04 9.123325e+04
## 80 Guyana 2.033071e+05 2.081042e+05 2.120772e+05
## 81 Haiti 8.567168e+05 8.934834e+05 9.307198e+05
## 82 Honduras 7.041621e+05 7.396318e+05 7.769459e+05
## 83 Hong Kong, China 3.316190e+06 3.379661e+06 3.473191e+06
## 84 Hungary 6.079237e+06 6.147720e+06 6.214324e+06
## 85 Iceland 1.693063e+05 1.717736e+05 1.735679e+05
## 86 India 1.025948e+08 1.059532e+08 1.094455e+08
## 87 Indonesia 1.862152e+07 1.940053e+07 2.020553e+07
## 88 Iran 1.074839e+07 1.127204e+07 1.181219e+07
## 89 Iraq 5.053788e+06 5.335012e+06 5.627633e+06
## 90 Ireland 1.472843e+06 1.499153e+06 1.529549e+06
## 91 Isle of Man 3.041582e+04 3.107182e+04 3.166567e+04
## 92 Israel 2.323491e+06 2.403561e+06 2.503959e+06
## 93 Italy 3.369844e+07 3.414982e+07 3.459238e+07
## 94 Jamaica 7.257254e+05 7.482876e+05 7.723456e+05
## 95 Japan 7.101819e+07 7.332929e+07 7.500006e+07
## 96 Jordan 7.513107e+05 7.991228e+05 8.440427e+05
## 97 Kazakhstan 6.209379e+06 6.396692e+06 6.585936e+06
## 98 Kenya 1.010199e+06 1.082085e+06 1.158426e+06
## 99 Kiribati 1.054187e+04 1.115324e+04 1.177903e+04
## 100 North Korea 6.797010e+06 7.252939e+06 7.721750e+06
## 101 South Korea 1.142358e+07 1.219746e+07 1.299394e+07
## 102 Kuwait 5.332849e+05 5.878232e+05 6.451490e+05
## 103 Kyrgyz Republic 1.037698e+06 1.075216e+06 1.108956e+06
## 104 Lao 2.333150e+05 2.458144e+05 2.590287e+05
## 105 Latvia 1.374667e+06 1.404423e+06 1.432319e+06
## 106 Lebanon 1.320402e+06 1.390579e+06 1.465634e+06
## 107 Lesotho 7.636722e+04 8.253367e+04 8.892443e+04
## 108 Liberia 3.336211e+05 3.536543e+05 3.746759e+05
## 109 Libya 7.933851e+05 8.884915e+05 9.904397e+05
## 110 Liechtenstein 3.835222e+03 3.893073e+03 3.941192e+03
## 111 Lithuania 1.462854e+06 1.508107e+06 1.555873e+06
## 112 Luxembourg 2.465394e+05 2.493815e+05 2.522550e+05
## 113 Macao, China 2.292781e+05 2.376078e+05 2.435455e+05
## 114 Macedonia, FYR 6.802103e+05 7.086757e+05 7.381837e+05
## 115 Madagascar 8.337642e+05 8.775250e+05 9.233980e+05
## 116 Malawi 2.398927e+05 2.565303e+05 2.742784e+05
## 117 Malaysia 3.324289e+06 3.484442e+06 3.649615e+06
## 118 Maldives 1.289746e+04 1.330701e+04 1.376876e+04
## 119 Mali 7.972307e+05 8.302079e+05 8.646754e+05
## 120 Malta 2.763384e+05 2.730307e+05 2.714740e+05
## 121 Marshall Islands 9.323270e+03 1.007123e+04 1.091076e+04
## 122 Mauritania 1.367608e+05 1.505604e+05 1.650886e+05
## 123 Mauritius 3.195152e+05 3.332923e+05 3.471843e+05
## 124 Mexico 2.808642e+07 2.931700e+07 3.061321e+07
## 125 Micronesia, Fed. Sts. 1.419170e+04 1.477304e+04 1.523980e+04
## 126 Moldova 8.959091e+05 9.356514e+05 9.764706e+05
## 127 Monaco 2.323400e+04 2.344800e+04 2.368900e+04
## 128 Mongolia 5.307544e+05 5.535133e+05 5.773571e+05
## 129 Montenegro 1.292181e+05 1.340713e+05 1.392938e+05
## 130 Morocco 4.848380e+06 5.061952e+06 5.278427e+06
## 131 Mozambique 4.803006e+05 5.127060e+05 5.464057e+05
## 132 Myanmar 5.512884e+06 5.737830e+06 5.973271e+06
## 133 Namibia 1.578102e+05 1.656184e+05 1.739636e+05
## 134 Nepal 4.411255e+05 4.559937e+05 4.714710e+05
## 135 Netherlands 7.803192e+06 7.917513e+06 8.039946e+06
## 136 New Caledonia 4.868702e+04 5.183153e+04 5.533056e+04
## 137 New Zealand 2.204526e+06 2.236624e+06 2.279646e+06
## 138 Nicaragua 1.022348e+06 1.073928e+06 1.127855e+06
## 139 Niger 3.295439e+05 3.563980e+05 3.845578e+05
## 140 Nigeria 1.186224e+07 1.242960e+07 1.302354e+07
## 141 Northern Mariana Islands 8.073316e+03 8.655527e+03 9.250286e+03
## 142 Norway 2.376327e+06 2.456007e+06 2.534594e+06
## 143 Oman 1.833677e+05 1.995581e+05 2.170597e+05
## 144 Pakistan 1.366756e+07 1.419101e+07 1.473699e+07
## 145 Palau 6.627161e+03 6.736073e+03 6.855879e+03
## 146 Panama 6.609825e+05 6.897512e+05 7.192792e+05
## 147 Papua New Guinea 1.865556e+05 2.117910e+05 2.385030e+05
## 148 Paraguay 8.662660e+05 8.931292e+05 9.201416e+05
## 149 Peru 6.884271e+06 7.220337e+06 7.570234e+06
## 150 Philippines 1.085199e+07 1.126489e+07 1.169151e+07
## 151 Poland 1.657536e+07 1.683567e+07 1.702627e+07
## 152 Portugal 3.360472e+06 3.364395e+06 3.368354e+06
## 153 Puerto Rico 1.480203e+06 1.529021e+06 1.585301e+06
## 154 Qatar 8.116982e+04 8.804065e+04 9.580697e+04
## 155 Romania 7.775433e+06 7.962558e+06 8.164758e+06
## 156 Russia 7.832602e+07 7.988771e+07 8.146468e+07
## 157 Rwanda 1.065866e+05 1.129610e+05 1.196576e+05
## 158 St. Kitts and Nevis 1.522598e+04 1.528050e+04 1.532931e+04
## 159 St. Lucia 2.291663e+04 2.351565e+04 2.424170e+04
## 160 St. Vincent and the Grenadines 2.633043e+04 2.703429e+04 2.775738e+04
## 161 Samoa 2.727841e+04 2.815593e+04 2.897331e+04
## 162 San Marino 1.071427e+04 1.109522e+04 1.144333e+04
## 163 Sao Tome and Principe 1.841719e+04 2.006490e+04 2.173410e+04
## 164 Saudi Arabia 2.382635e+06 2.586258e+06 2.809100e+06
## 165 Senegal 1.096955e+06 1.161241e+06 1.228874e+06
## 166 Serbia 2.595006e+06 2.683242e+06 2.770952e+06
## 167 Seychelles 1.876104e+04 1.983538e+04 2.094045e+04
## 168 Sierra Leone 5.535685e+05 5.797787e+05 6.067908e+05
## 169 Singapore 2.012000e+06 2.043000e+06 2.075000e+06
## 170 Slovak Republic 1.768967e+06 1.818929e+06 1.863258e+06
## 171 Slovenia 6.000206e+05 6.187531e+05 6.382787e+05
## 172 Solomon Islands 1.237527e+04 1.329659e+04 1.429003e+04
## 173 Somalia 7.433007e+05 7.810217e+05 8.166815e+05
## 174 South Africa 1.006591e+07 1.030848e+07 1.055957e+07
## 175 Spain 2.123678e+07 2.176544e+07 2.233044e+07
## 176 Sri Lanka 2.249555e+06 2.344592e+06 2.441982e+06
## 177 Sudan 1.571927e+06 1.683562e+06 1.802344e+06
## 178 Suriname 1.673102e+05 1.698198e+05 1.710630e+05
## 179 Swaziland 3.554773e+04 3.929612e+04 4.325858e+04
## 180 Sweden 6.285731e+06 6.393453e+06 6.517403e+06
## 181 Switzerland 3.404449e+06 3.481651e+06 3.545846e+06
## 182 Syria 2.499429e+06 2.626816e+06 2.760217e+06
## 183 Tajikistan 1.000669e+06 1.041608e+06 1.084708e+06
## 184 Tanzania 9.108258e+05 9.872961e+05 1.068227e+06
## 185 Thailand 7.176231e+06 7.440174e+06 7.711257e+06
## 186 Timor-Leste 7.108209e+04 7.435281e+04 7.788066e+04
## 187 Togo 3.621139e+05 4.040164e+05 4.462997e+05
## 188 Tonga 1.614767e+04 1.661674e+04 1.703157e+04
## 189 Trinidad and Tobago 1.208498e+05 1.181071e+05 1.149191e+05
## 190 Tunisia 2.070869e+06 2.149857e+06 2.229322e+06
## 191 Turkey 1.244807e+07 1.299329e+07 1.355938e+07
## 192 Turkmenistan 9.822601e+05 1.013434e+06 1.045665e+06
## 193 Turks and Caicos Islands 2.804887e+03 2.829033e+03 2.878290e+03
## 194 Tuvalu 1.480186e+03 1.545270e+03 1.611030e+03
## 195 Uganda 5.499091e+05 5.891064e+05 6.294769e+05
## 196 Ukraine 2.475757e+07 2.534887e+07 2.594411e+07
## 197 United Arab Emirates 1.390527e+05 1.555970e+05 1.800752e+05
## 198 United Kingdom 4.273308e+07 4.283308e+07 4.292583e+07
## 199 United States 1.463404e+08 1.484759e+08 1.509224e+08
## 200 Uruguay 2.273438e+06 2.295858e+06 2.313813e+06
## 201 Uzbekistan 4.067599e+06 4.227790e+06 4.395765e+06
## 202 Vanuatu 9.621427e+03 1.005774e+04 1.052469e+04
## 203 Venezuela 6.994264e+06 7.324840e+06 7.674281e+06
## 204 Vietnam 7.169607e+06 7.487421e+06 7.819407e+06
## 205 Virgin Islands (U.S.) 3.661847e+04 4.004103e+04 4.384296e+04
## 206 Yemen 7.369436e+05 7.769681e+05 8.172839e+05
## 207 Zambia 1.069557e+06 1.160044e+06 1.256178e+06
## 208 Zimbabwe 7.927728e+05 8.467739e+05 9.039055e+05
## 209 South Sudan 3.210970e+05 3.268101e+05 3.330133e+05
Wrap-up
Add worksheet
Where readxl
and gdata
were only able to import Excel data, XLConnect
’s approach of providing an actual interface to an Excel file makes it able to edit your Excel files from inside R. In this exercise, you’ll create a new sheet. In the next exercise, you’ll populate the sheet with data, and save the results in a new Excel file.
You’ll continue to work with urbanpop.xlsx. The my_book
object that links to this Excel file is already available.
# XLConnect is already available
# Build connection to urbanpop.xlsx
my_book <- loadWorkbook("_data/urbanpop.xlsx")
# Add a worksheet to my_book, named "data_summary"
createSheet(my_book, "data_summary")
# Use getSheets() on my_book
getSheets(my_book)
## [1] "1960-1966" "1967-1974" "1975-2011" "data_summary"
Great! It’s time to populate your newly created worksheet!
Populate worksheet
The first step of creating a sheet is done; let’s populate it with some data now! summ
, a data frame with some summary statistics on the two Excel sheets is already coded so you can take it from there.
# XLConnect is already available
# Create data frame: summ
sheets <- getSheets(my_book)[1:3]
dims <- sapply(sheets, function(x) dim(readWorksheet(my_book, sheet = x)), USE.NAMES = FALSE)
summ <- data.frame(sheets = sheets,
nrows = dims[1, ],
ncols = dims[2, ])
summ
## sheets nrows ncols
## 1 1960-1966 209 8
## 2 1967-1974 209 9
## 3 1975-2011 209 38
# Add data in summ to "data_summary" sheet
writeWorksheet(my_book, summ, "data_summary")
# Save workbook as summary.xlsx
saveWorkbook(my_book, "_data/summary.xlsx")
Great! If you took the correct steps, the resulting Excel file looks like this file.
Renaming sheets
Come to think of it, "data_summary"
is not an ideal name. As the summary of these excel sheets is always data-related, you simply want to name the sheet "summary"
.
The code to build a connection to "urbanpop.xlsx"
and create my_book
is already provided for you. It refers to an Excel file with 4 sheets: the three data sheets, and the "data_summary"
sheet.
# Build connection to urbanpop.xlsx: my_book
my_book <- loadWorkbook("_data/summary.xlsx")
# Rename "data_summary" sheet to "summary"
renameSheet(my_book, "data_summary", "summary")
# Print out sheets of my_book
getSheets(my_book)
## [1] "1960-1966" "1967-1974" "1975-2011" "summary"
# Save workbook to "renamed.xlsx"
saveWorkbook(my_book, file = "_data/renamed.xlsx")
Nice one! You can find the file you just created here.
Removing sheets
After presenting the new Excel sheet to your peers, it appears not everybody is a big fan. Why summarize sheets and store the info in Excel if all the information is implicitly available? To hell with it, just remove the entire fourth sheet!
# Load the XLConnect package
library(XLConnect)
# Build connection to renamed.xlsx: my_book
my_book <- loadWorkbook("_data/renamed.xlsx")
# Remove the fourth sheet
removeSheet(my_book, 4)
# Save workbook to "clean.xlsx"
saveWorkbook(my_book, file = "_data/clean.xlsx")
Nice one! The file you’ve created in this exercise is available here.