Welcome to the course

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt Professor, Free University Brussels & Amsterdam

tacamp

Is investing monkey-business?

¹ Source: Eric Isselee, Getty Images

R datacamp

Who am I?

Professor of Finance

Vrije Universiteit Brussel

Who am I?

• Advisor to investment companies about risk optimized investment: Winning by losing less.

Diversify to avoid losses

Screening Based on Liquidity

Screening Based On Financial Risk And Performance Analysis

> Optimise Portfolios Under **Diversification Constraints**

datacamp

Simple tricks

- To avoid large losses:
 - Carefully select diversified portfolios 0
 - Use backtesting and online performance monitoring 0

Simple tricks

DataCamp

Chapter 1: Portfolio Weights & Returns

Chapter 1: Portfolio Weights & Returns

Let's practice!

The portfolio weights

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt

Professor, Free University Brussels & Amsterdam

There are two similar companies: Do you invest in either of them based on a coin toss?

¹ Source: ICMA Photos, Flickr

tacamp

There are two similar companies: Do you invest in either of them based on a coin toss?

¹ Source: ICMA Photos, Flickr

acamb

There are two similar companies: Do you invest in either of them based on a coin toss?

¹ Source: ICMA Photos, Flickr

tacamp

There are two similar companies: Do you invest in either of them based on a coin toss?

¹ Source: ICMA Photos, Flickr

acamp

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Company 1

Portfolio

acamp

Portfolio

or

acamp

Portfolio

acamp

Portfolio

acamp

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

or

Portfolio

acamp

Asset weighting

Investment	Value Invested	Weigh
1	V ₁	$w_1 = \frac{V_1}{V_1 + \dots}$
2	V ₂	$w_2 = \frac{V_2}{V_1 + \dots - V_2}$
•	•	• •
N	V _N	$w_N = \frac{V_N}{V_1 + \dots}$

values <- c(50000, 20000, 100000, 20000) names(values) <- c("Inv 1", "Inv 2", "Inv 3", "Inv 4")</pre> weights <- values/sum(values)</pre> barplot(weights)

values <- c(50000, 20000, 100000, 20000) names(values) <- c("Inv 1", "Inv 2", "Inv 3", "Inv 4")</pre> weights <- values/sum(values)</pre> barplot(weights)

4 datacamp

datacamp

¹ Source: http://www.falibo.com/vocabulary/idiom-dont-put-all-your-eggs-in-one/

R datacamp

Let's practice!

The portfolio return

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt Professor, Free University Brussels & Amsterdam

- Weights reveal active investment bets •
- Returns are the relative changes in value:

final value – initial value initial value

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

- Weights reveal active investment bets
- Returns are the relative changes in value: \bullet

final value – initial value initial value

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Asset 1	 Asset _N
InValue.Asset ₁	 InValue.Asse
FinValue.Asset₁	 FinValue.Ass

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

Asset 1	 Asset _N
InValue.Asset1	 InValue.Asse
FinValue.Asset1	 FinValue.Ass

 $InValue.Portfolio = InValue.Asset_1 + ... + InValue.Asset_N$

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

Asset 1	 Asset _N
InValue.Asset ₁	 InValue.Asse
FinValue.Asset₁	 FinValue.Ass

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

Asset 1	 Asset _N
InValue.Asset1	 InValue.Asse
FinValue.Asset1	 FinValue.Ass

 $InValue.Portfolio = InValue.Asset_1 + ... + InValue.Asset_N$

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

Asset 1	 Asset _N
InValue.Asset ₁	 InValue.Asse
FinValue.Asset₁	 FinValue.Ass

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

Asset 1	 Asset _N
InValue.Asset ₁	 InValue.Asse
FinValue.Asset₁	 FinValue.Ass

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

Asset 1	 Asset _N
InValue.Asset ₁	 InValue.Asse
FinValue.Asset₁	 FinValue.Ass

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

FinValue.Portfolio – InValue.Portfolio *Portfolio Return* = InValue.Portfolio

Asset 1	Asset ₂
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

Asset 1	Asset ₂
InValue.Asset ₁ = 200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

Asset 1	Asset ₂
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

Asset 1	Asset ₂
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = $$330$

Asset 1	Asset ₂
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

Asset 1	Asset ₂
InValue.Asset ₁ = 200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

Asset 1 Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300	
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330	
InValue.Portfolio = \$200 + \$300 = \$500		
FinValue.Portfolio = \$180 + \$330 = \$510		

Asset 1 Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300	
FinValue.Asset ₁ = \$180 FinValue.Asset ₂ =		
InValue.Portfolio = \$200 + \$300 = \$500		
FinValue.Portfolio = \$180 + \$330 = \$510		

tacamp

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

tacamp

tacamp

Portfolio returns: weighted average return

Portfolio Return =
$$w_1R_1 + w_2R_2 + \dots + w_nR_n + \dots + w_nR_n$$

 $+w_nR_n$

Portfolio returns: weighted average return

Portfolio Return =
$$w_1R_1 + w_2R_2 + \dots + w_nR_n + \dots + w_nR_n$$

Where:
$$w_i = \frac{InValue.Asset_i}{\sum_{j=1}^{N} InValue.Asset_j}$$

 $+w_nR_n$

Portfolio returns: weighted average return

Portfolio Return =
$$w_1R_1 + w_2R_2 + \dots + w_nR_n + \dots + w_nR_n$$

Where:
$$w_i = \frac{InValue.Asset_i}{\sum_{j=1}^{N} InValue.Asset_j}$$

atacamp

$$R_i = \frac{FinValue.Asset_i - InValue}{InValue.Asset_i}$$

 $+w_nR_n$

$Value.Asset_i$

Asset 1	Asset
InValue.Asset ₁	 InValue.Asse
FinValue.Asset₁	 FinValue.Ass

Asset 1			Asset _N
InValue.Asset ₁			InValue.Asse
FinValue.Asset ₁			FinValue.Ass
Asset 1			Asset _N
$w_1 = \frac{InValue.Asset_1}{InValue.Portfolio}$		$w_n = \frac{1}{2}$	$\frac{InValue.Asset_{n}}{InValue.Portfolio}$
$R_1 = \frac{FinValue. Asset_1 - InV}{InValue. Asset_1}$	Value. $Asset_1$ et_1	$R_n = \frac{FinValu}{V}$	ue. Asset _n – InValue. InValue. Asset _n

Asset 1			Asset _N
InValue.Asset ₁			InValue.Asse
FinValue.Asset ₁			FinValue.Ass
	4	ን	
Asset 1			Asset _N
$w_1 = \frac{InValue.As}{InValue.Port}$	$\frac{set_1}{tfolio}$	$w_n = \frac{1}{2}$	$\frac{InValue.Asset_n}{InValue.Portfolio}$
$R_1 = \frac{FinValue. Asset_1 - InV}{InValue. Asset}$	Value. $Asset_1$ et_1	$R_n = \frac{FinValu}{V}$	ue. $Asset_n - InValue.$ InValue. $Asset_n$

Asset 1			Asset _N
InValue.Asset ₁			InValue.Asse
FinValue.Asset ₁			FinValue.Ass
Asset 1			Asset _N
$w_1 = \frac{InValue.Asset_1}{InValue.Portfolio}$		$w_n = \frac{1}{2}$	$\frac{InValue.Asset_{n}}{InValue.Portfolio}$
$R_1 = \frac{FinValue. Asset_1 - InV}{InValue. Asset_1}$	Value. $Asset_1$ et_1	$R_n = \frac{FinValu}{V}$	ue. Asset _n – InValue. InValue. Asset _n

Asset 1			Asset _N
InValue.Asset ₁			InValue.Asset _N
FinValue.Asset ₁			FinValue.Asset _N
	4		
Asset 1			Asset _N
$w_1 = \frac{InValue.As}{InValue.Port}$	$\frac{set_1}{sfolio}$	$w_n = \frac{1}{2}$	$\frac{InValue.Asset_n}{InValue.Portfolio}$
$R_1 = \frac{FinValue. Asset_1 - InV}{InValue. Asset_1}$	$alue. Asset_1$ et_1	$R_n = \frac{FinValu}{2}$	ue. $Asset_n - InValue. Asset_n$ InValue. $Asset_n$

Asset 1			Asset _N
InValue.Asset ₁			InValue.Asse
FinValue.Asset ₁			FinValue.Ass
Asset 1			Asset _N
$w_1 = \frac{InValue.Asset_1}{InValue.Portfolio}$		$w_n = \frac{1}{2}$	$\frac{InValue.Asset_{n}}{InValue.Portfolio}$
$R_1 = \frac{FinValue. Asset_1 - InV}{InValue. Asset_1}$	Value. $Asset_1$ et_1	$R_n = \frac{FinValu}{V}$	ue. Asset _n – InValue. InValue. Asset _n

datacamp

Asset 1			Asset _N
InValue.Asset ₁			InValue.Asse
FinValue.Asset ₁			FinValue.Ass
	4		
Asset 1		Asset _N	
$w_1 = \frac{InValue.Asset_1}{InValue.Portfolio}$		$w_n = \frac{InValue.Asset_n}{InValue.Portfolio}$	
$R_1 = \frac{FinValue. Asset_1 - InValue. Asset_1}{InValue. Asset_1}$		$R_n = \frac{FinValue. Asset_n - InValue. InValue. Asset_n}{InValue. Asset_n}$	

Portfolio Return = $w_1R_1 + w_2R_2 + \ldots + w_nR_n$

Asset 1	Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300		
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330		
4			
Asset 1	Asset ₂		
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$		
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$		

Asset 1	Asset ₂
InValue.Asset ₁ = 200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330
	ን
Asset 1	Asset ₂
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$

V datacamp

Asset 1	Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300		
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330		
Asset 1	Asset ₂		
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$		
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$		

Asset 1	Asset ₂	
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300	
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330	
4		
Asset 1	Asset ₂	
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$	
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$	

V datacamp

Asset 1	Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300		
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330		
Asset 1	Asset ₂		
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$		
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$		

Asset 1	Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300		
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330		
•			
Asset 1	Asset ₂		
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$		
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$		

Asset 1	Asset ₂		
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300		
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330		
	\mathbf{V}		
Asset 1	Asset ₂		
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$		
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$		

Asset 1	Asset ₂
InValue.Asset ₁ = \$200	InValue.Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330
	b
Asset 1	Asset ₂
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$
	}

V datacamp

tacamp

Asset 1	Asset ₂		
InValue.Asset₁ = \$200	InValue.Asset ₂ = \$300		
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330		
Asset 1	Asset ₂		
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$		
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$		
4	b		
Port folio Return $-0.4^{*}(-10\%) \pm 0.6^{*}(10\%)$ -			

Portfolio Return = $0.4^{*}(-10\%) + 0.6^{*}(10\%) = 2\%$

Let's practice!

PerformanceAnalytics

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt Professor, Free University Brussels & Amsterdam

The practitioner's challenge

- In practice, time series of portfolio returns
- Longer history \rightarrow more info on portfolio
- Good package = PerformanceAnalytics

The creators

• PerformanceAnalytics is the go-to package for portfolio return analysis in R

Peter Carl

Brian Peterson

¹ https://tradeblotter.files.wordpress.com/2012/02/bwauthorpcc.jpeg

R datacamp

Calculating returns

- Return.calculate : to compute the asset returns ${\bullet}$
- Return.portfolio : to compute the portfolio return
- Return.calculate(prices)
 - xts -object 0
- Dates structure: YYYY-MM-DD \bullet

Calculating returns

• Return.calculate

returns <- Return.calculate(prices)</pre>

returns <- returns[(-1),]</pre>

head(prices)

AAPL	MSF1	ī	
2006-01	L-03	9.829465	21.07395
2006-01	L-04	9.858394	21.17603
2006-01	L-05	9.780810	21.19173
•••			

head(returns)

	AAPL
2006-01-03	NA
2006-01-04	0.002943090
2006-01-05	-0.007869842
• • •	

R datacamp

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

NA 0.0048434670 0.0007415934

MSFT

Dynamics of portfolio weights

Set Initial Weights & Do Not Intervene

Example: Initial 50/50 weight

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

R datacamp

Dynamics of portfolio weights

Set Initial Weights & Do Not Intervene

Example: Initial 50/50 weight

Actively Change Portfolio Weights

Example: 50/50 Weight With Rebalance

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

datacamp

- Weight Asset 2
- Weight Asset 1

Portfolio returns

```
Return.portfolio <- function(R, weights = NULL,
rebalance_on = c(NA, "years", "quarters",
                     "months", "weeks", "days"))
```

- Three arguments to be specified:
 - return data
 - weights
 - rebalancing

Let's practice!

