Drivers in the case of two assets

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt Professor, Free University Brussels & Amsterdam

Optimizing Portfolio requires expectations: about average portfolio return (mean)

about how far off it may be (variance)

Optimizing Portfolio requires expectations: about average portfolio return (mean)

about how far off it may be (variance)

Why?

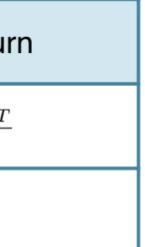
Optimizing Portfolio requires expectations: about average portfolio return (mean)

about how far off it may be (variance)

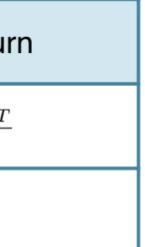
Optimizing Portfolio requires expectations: about average portfolio return (mean) about how far off it may be (variance)

Portfolio Return Is A Random Variable

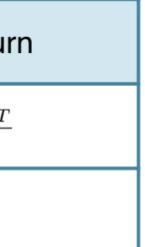
	Mean Portfolio Retur
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$



	Mean Portfolio Retur
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$



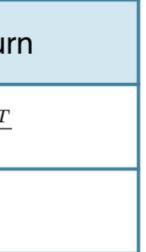
	Mean Portfolio Retur
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$



	Mean Portfolio Retu
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$

	Portfolio Return Varia
Computed on a sample of T Historical Returns	$\hat{\sigma}^2 = \frac{(R_1 - \hat{\mu})^2 + (R_2 - \hat{\mu})^2 + \ldots + (R_2 - \hat{\mu})^2}{T - 1}$
When the return is a random variable	$\sigma^2 = E[(R-\mu)^2]$

INTRODUCTION TO PORTFOLIO ANALYSIS IN R



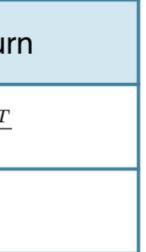
ince

$$(R_T - \hat{\mu})^2$$

	Mean Portfolio Retu
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$

	Portfolio Return Varia
Computed on a sample of T Historical Returns	$\hat{\sigma}^2 = \frac{(R_1 - \hat{\mu})^2 + (R_2 - \hat{\mu})^2 + \ldots + (R_2 - \hat{\mu})^2}{T - 1}$
When the return is a random variable	$\sigma^2 = E[(R-\mu)^2]$

INTRODUCTION TO PORTFOLIO ANALYSIS IN R



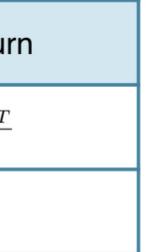
ince

$$(R_T - \hat{\mu})^2$$

	Mean Portfolio Retu
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$

	Portfolio Return Varia
Computed on a sample of T Historical Returns	$\hat{\sigma}^2 = \frac{(R_1 - \hat{\mu})^2 + (R_2 - \hat{\mu})^2 + \ldots + (R_2 - \hat{\mu})^2}{T - 1}$
When the return is a random variable	$\sigma^2 = E[(R-\mu)^2]$

INTRODUCTION TO PORTFOLIO ANALYSIS IN R



ince

$$(R_T - \hat{\mu})^2$$

Drivers of mean & variance

• Assume two assets:

Asset 1	Asset 2
Weight: w_1	Weight: w_2
Return: R_1	Return: R_2

- Portfolio Return, $P = w1 \cdot R1 + w2 \cdot R2$
- Thus: $E[P] = w_1 \cdot E[R_1] + w_2 \cdot E[R_2]$

Portfolio return variance

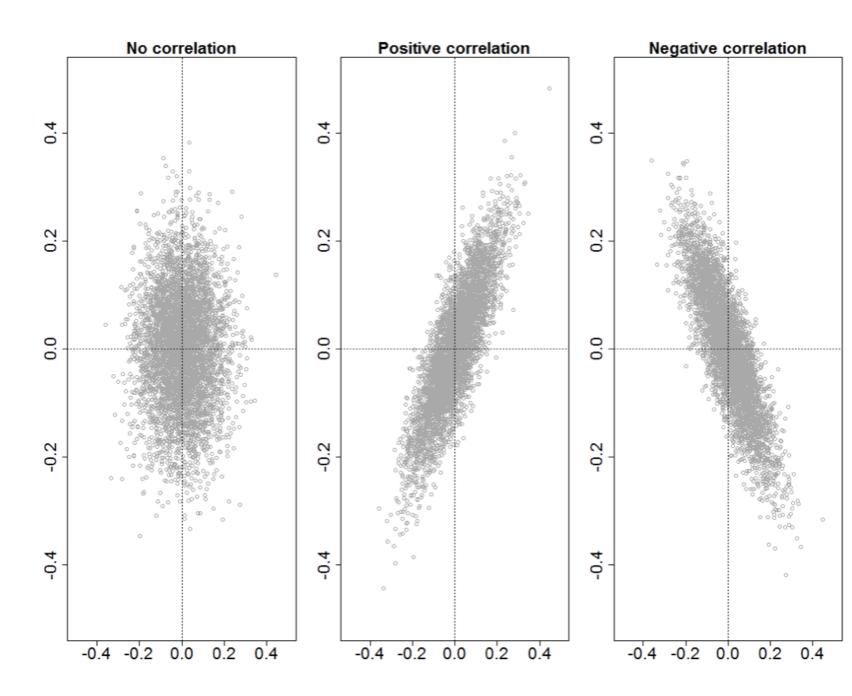
Again, for a portfolio with 2 assets

• $var(P) = w_1^2 \cdot var(R_1) + w_2^2 \cdot var(R_2) + 2 \cdot w_1 \cdot w_2 \cdot cov(R_1, R_2)$

Covariance between return 1 and 2

- $Cov(R_1, R_2)$ $\circ = E[(R_1 - E[R_1])(R_2 - E(R_2))]$
 - $\circ = StdDev(R_1) \cdot StdDev(R_2) \cdot corr(R_1, R_2)$

Correlations



R datacamp

Take away formulas

- E[Portfolio Return] = $E[P] = w_1 \cdot E[R_1] + w_2 \cdot E[R_2]$
- var(Portfolio Return) = $var(P) = w_1^2 \cdot var(R_1) + w_2^2 \cdot var(R_2) + 2 \cdot w_1 \cdot w_2 \cdot cov(R_1, R_2)$

Let's practice!

Using matrix notation

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt

Professor, Free University Brussels & Amsterdam

Variables at stake for n assets

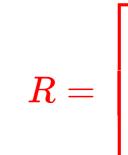
w: the N x 1 column-matrix of portfolio weights:

$$w = \left[egin{array}{cc} w_1 \ w_2 \ \ldots \ w_N \end{array}
ight]$$

$$\mu$$
: the N x 1 column-matrix of expected returns:

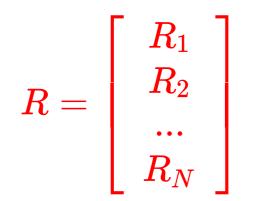
$$\mu = \left[egin{array}{c} \mu_1 \ \mu_2 \ \ldots \ \mu_N \end{array}
ight]$$

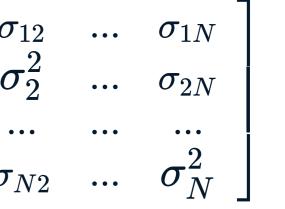
R: the $N \ge 1$ column-matrix of asset returns:



 Σ : The N x N covariance matrix of the Nasset returns:

$$w = \left[egin{array}{ccc} \sigma_1^2 & \sigma \ \sigma_{21} & \sigma \ \dots & \ddots \ \sigma_{N1} & \sigma \end{array}
ight.$$





Generalizing from 2 to n assets

Portfolio Return

$$w_1 * R_1 + w_2 * R_2$$
 $w_1 * R_1 +$

$\ldots + w_N * R_N$

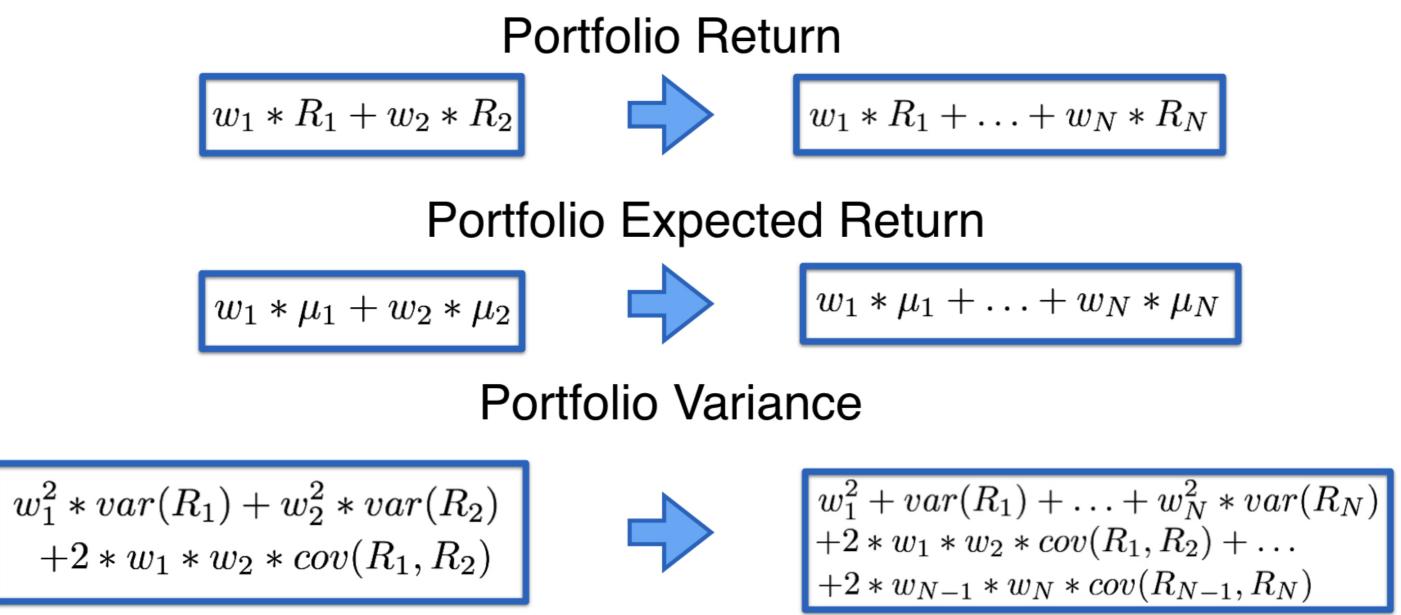
Generalizing from 2 to n assets

Portfolio Expected Return

$$w_1 * \mu_1 + w_2 * \mu_2$$

$w_1 * \mu_1 + \ldots + w_N * \mu_N$

Generalizing from 2 to n assets



Matrices simplify the notation

- Avoid large number of terms by using matrix notation
- We have 4 matrices:
 - weights (w), returns (R), expected returns (μ), and covariance matrix (Σ)

$$w = \left[egin{array}{c} w_1 \ w_2 \ ... \ w_N \end{array}
ight] w' = \left[egin{array}{c} w_1 \ w_2 \ ... \ w_N \end{array}
ight]$$

Simplifying the notation

Portfolio Return

$$w_1 * R_1 + \ldots + w_N * R_N$$
 $w'R$

Simplifying the notation

Portfolio Return

$$w_1 * R_1 + \ldots + w_N * R_N$$
 $w'R$

Portfolio Expected Return

Simplifying the notation

Portfolio Return

$$w_1 * R_1 + \ldots + w_N * R_N$$
 $w'R$

Portfolio Expected Return

 $w_1 * \mu_1 + \ldots + w_N * \mu_N$

Portfolio Variance

$$w_1^2 + var(R_1) + \ldots + w_N^2 * var(R_N) + 2 * w_1 * w_2 * cov(R_1, R_2) + \ldots + 2 * w_{N-1} * w_N * cov(R_{N-1}, R_N)$$

tacamp

$$w'\Sigma w$$

Let's practice!

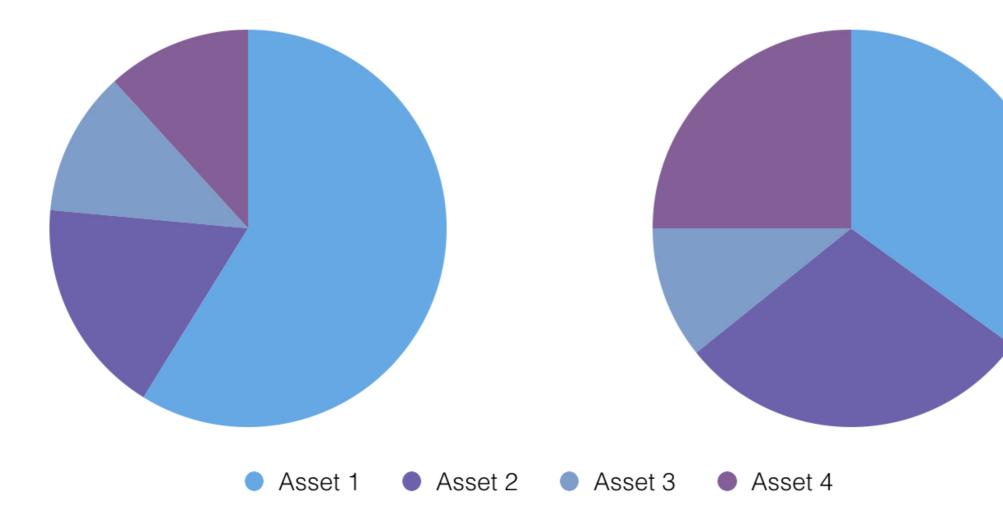
Portfolio risk budget INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt

Professor, Free University Brussels & Amsterdam

Who did it?

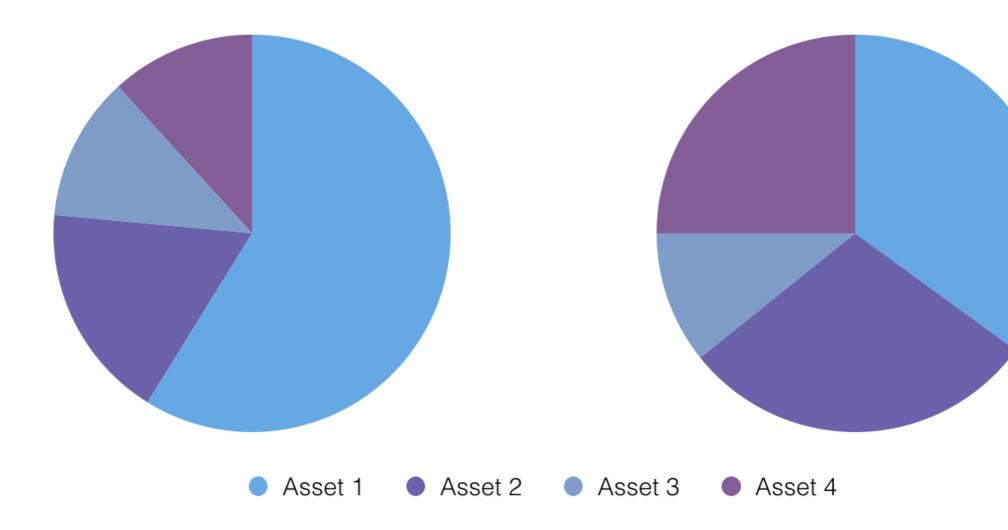
R datacamp



Who did it?

Capital Allocation Budget

Portfolio Volatility Risk



V datacamp

Portfolio volatility in risk contribution

$$ext{Portfolio Volatility} = \sum_{i=1}^N RC_i$$

where:
$$RC_i = rac{w_i(\Sigma w)_i}{\sqrt{w'\Sigma w}}$$

- Risk contribution of asset i depends on ullet
 - 1. the complete matrix of weights w
 - 2. the full covariance matrix Σ

Percent risk contribution

$$\% RC_i = rac{RC_i}{ ext{Portfolio volatility}}$$

• where
$$\sum_{i=1}^N \% RC_i = 1$$

Relatively less risky assets: $\% RC_i > w_i$

Relatively more risky assets: $\% RC_i < w_i$

Let's practice!

