Modern portfolio theory of Harry Markowitz

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt

Professor, Free University Brussels & Amsterdam

Portfolio weights are optimal

...when they optimize an objective function while satisfying the constraints.

Possible Objectives	Possible Constraints
Maximize expected return	Only positive weights
Minimize the variance	Weights sum to 1 (all capital needs to be in
Maximize the Sharpe ratio	Portfolio expected return equals a target w

nvested)

value

Harry Markowitz

- Nobel Prize Winner
- Recommends finding optimal portfolios by
 - *Objective*: Minimize portfolio variance 0
 - Constraints: 0
 - Full investment
 - Expected return should be equal to a pre-specified target return

tacamp

tacamp

ICOMD

tacamp

acamp

Let's practice!

The efficient frontier

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Kris Boudt Professor, Free University Brussels & Amsterdam

tacamp

datacamp

datacamp

latacamp

latacamp

tacamp

tacamp

The efficient frontier

datacamp

Minimum variance portfolio

tacamp

Minimum variance portfolio

tacamp

Minimum variance portfolio

tacamp

tacamp

tacamp

acamp

tacamp

tacamp

datacamp

latacamp

latacamp

latacamp

tacamp

Let's practice!

In-sample vs. out-ofsample evaluation

INTRODUCTION TO PORTFOLIO ANALYSIS IN R

Professor, Free University Brussels & Amsterdam

Bad news: estimation error

• Limitation to data-driven portfolio allocation:

Bad news: estimation error

• Limitation to data-driven portfolio allocation:

Bad news: estimation error

• Limitation to data-driven portfolio allocation:

variance:

- Do not ignore estimation error \bullet
- Use split-sample analysis to do a realistic evaluation of portfolio performance

- Do not ignore estimation error \bullet
- Use split-sample analysis to do a realistic evaluation of portfolio performance

- Do not ignore estimation error \bullet
- Use split-sample analysis to do a realistic evaluation of portfolio performance

- Do not ignore estimation error \bullet
- Use split-sample analysis to do a realistic evaluation of portfolio performance

No look-ahead bias in optimized weights

• Split-sample design matches with the investor who:

Uses at time K the returns R1, ..., Rk to compute optimal weights

No look-ahead bias in optimized weights

• Split-sample design matches with the investor who:

Uses at time K the returns R1, ..., Rk to compute optimal weights

Invests between time K and time T using optimized weights

• Function window() to do split-sample analysis in R

Tim

Let's practice!

