A tale of two variables

INTRODUCTION TO REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

Swedish motor insurance data

- Each row represents one geographic region in Sweden.
- There are 63 rows.

n_claims	total_payment_sek
108	392.5
19	46.2
13	15.7
124	422.2
40	119.4
•••	•••

1

http://college.hmco.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/frame.

Descriptive statistics

library(dplyr)	
swedish_motor_insurance	%>%
summarize_all(mean)	

#	Α	tibble	: 1 x 2
	n_	_claims	total_payment_sek
		<dbl></dbl>	<dbl></dbl>
1		22.9	98.2

swedish_motor_insurance %> summarize()

#	А	tibble:	1	Х	1	
	correlation					
		<db<sup>-</db<sup>	L>			
1		0.88	81			

correlation = cor(n_claims, total_payment_sek)

What is regression?

- Statistical models to explore the relationship a response variable and some explanatory variables.
- Given values of explanatory variables, you can predict the values of the response variable.

n_claims	total_payment_sek
108	392.5
19	46.2
13	15.7
124	422.2
40	119.4
200	???

Jargon

Response variable (a.k.a. dependent variable)

The variable that you want to predict.

Explanatory variables (a.k.a. independent variables)

The variables that explain how the response variable will change.

Linear regression and logistic regression

Linear regression

• The response variable is numeric.

Logistic regression

• The response variable is logical.

Simple linear/logistic regression

• There is only one explanatory variable.

Visualizing pairs of variables

```
library(ggplot2)
                                                         400 -
                                                      total_payment_sek
ggplot(
                                                         300 -
  swedish_motor_insurance,
  aes(n_claims, total_payment_sek)
                                                         200 -
)
  +
  geom_point()
                                                         100 -
```


40

0 -

80 120 n_claims

Adding a linear trend line

```
library(ggplot2)
```

```
ggplot(
   swedish_motor_insurance,
   aes(n_claims, total_payment_sek)
) +
   geom_point() +
   geom_smooth(
      method = "lm",
      se = FALSE
```


R datacamp

INTRODUCTION TO REGRESSION IN R

80 120 n_claims

Course flow

Chapter 1

Visualizing and fitting linear regression models.

Chapter 2

Making predictions from linear regression models and understanding model coefficients.

Chapter 3

Assessing the quality of the linear regression model.

Chapter 4

Same again, but with logistic regression models

Let's practice!

Fitting a linear regression

Richie Cotton Data Evangelist at DataCamp

Straight lines are defined by two things

Intercept

The y value at the point when x is zero.

Slope

The amount the y value increases if you increase x by one.

Equation

y = intercept + slope * x

Estimating the intercept

datacamp

Estimating the intercept

datacamp

Estimating the intercept

datacamp

datacamp

datacamp

datacamp

datacamp

Running a model

lm(total_payment_sek ~ n_claims, data = swedish_motor_insurance)

Call: lm(formula = total_payment_sek ~ n_claims, data = swedish_motor_insurance)

Coefficients: (Intercept) n_claims 19.994 3.414

Interpreting the model coefficients

Call:				
lm(formula = t	otal_payment_sek	~ n_claims,	data =	swedish_motor
Coefficients:				
(Intercept)	n_claims			
19 994	3 414			

Equation

 $total_payment_sek = 19.994 + 3.414 * n_claims$

_insurance)

Let's practice!

Categorical explanatory variables

INTRODUCTION TO REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

Fish dataset

- Each row represents one fish.
- There are 128 rows in the dataset.
- There are 4 species of fish.

species	mass_g
Bream	242.0
Perch	5.9
Pike	200.0
Roach	40.0
•••	•••

Visualizing 1 numeric and 1 categorical variable

library(ggplot2)

ggplot(fish, aes(mass_g)) +
geom_histogram(bins = 9) +
facet_wrap(vars(species))

Summary statistics: mean mass by species

```
fish %>%
  group_by(species) %>%
  summarize(mean_mass_g = mean(mass_g))
```

A tibble: 4 x 2

species mean_mass_g

<dbl> <chr>

- 1 Bream 618.
- 382. 2 Perch
- 3 Pike 719.
- 4 Roach 152.

Linear regression

lm(mass_g ~ species, data = fish)

Call: lm(formula = mass_g ~ species, data = fish) Coefficients: (Intercept) speciesPerch speciesPike speciesRoach 100.9 617.8 -235.6 -465.8

No intercept

lm(mass_g ~ species + 0, data = fish)

Call: lm(formula = mass_g ~ species + 0, data = fish) Coefficients: speciesBream speciesPerch speciesPike speciesRoach 718.7 617.8 382.2 152.0

Let's practice!

