Why you need logistic regression

Richie Cotton Data Evangelist at DataCamp

Bank churn dataset

as_churned	time_since_first_purchase	time_since_last_purchase
0	0.3993247	-0.5158691
1	-0.4297957	0.6780654
0	3.7383122	0.4082544
0	0.6032289	-0.6990435
•••	•••	•••
response	length of relationship	recency of activity

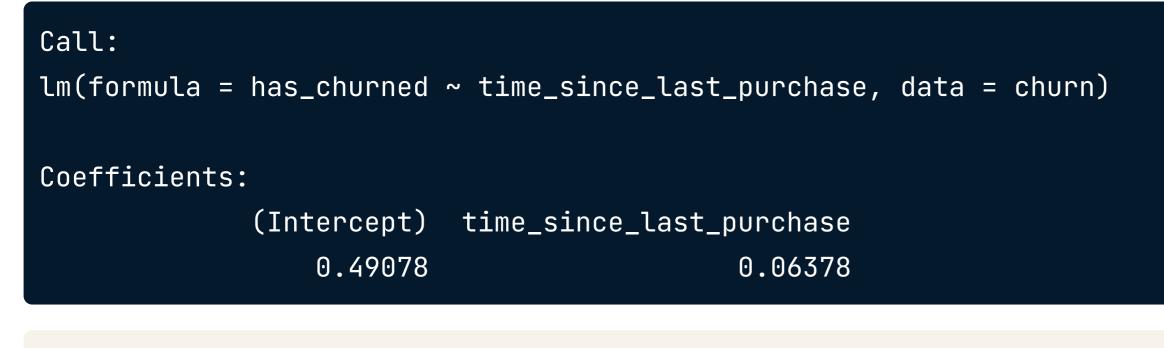
¹ https://www.rdocumentation.org/packages/bayesQR/topics/Churn

tacamp

e 4 4 5 •• Y

Churn vs. recency: a linear model

mdl_churn_vs_recency_lm <- lm(has_churned ~ time_since_last_purchase, data = churn)</pre>

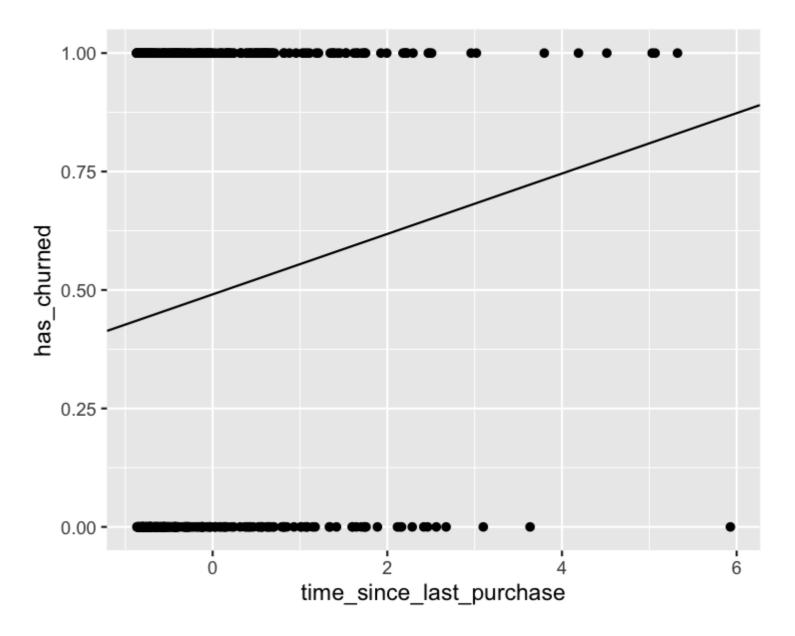


```
coeffs <- coefficients(mdl_churn_vs_recency_lm)</pre>
intercept <- coeffs[1]</pre>
slope <- coeffs[2]</pre>
```


Visualizing the linear model

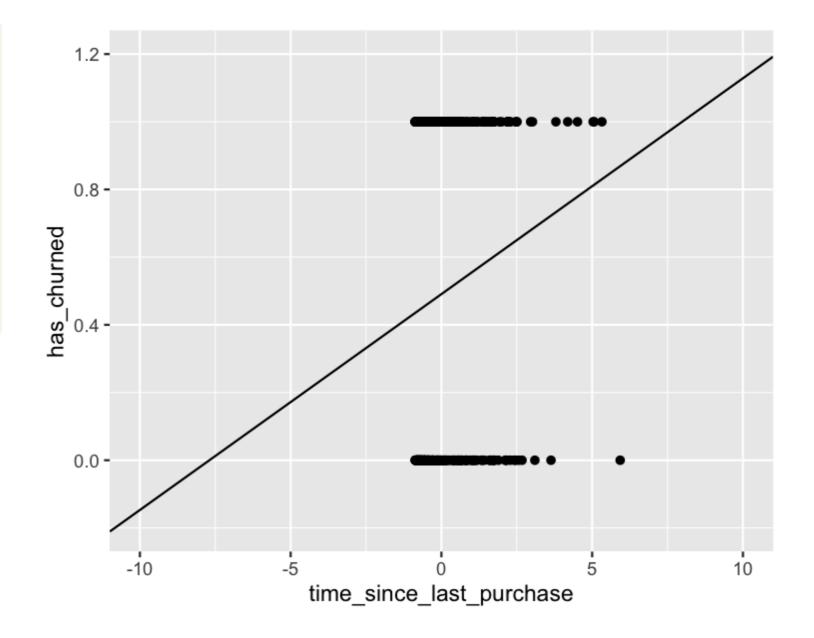
```
ggplot(
   churn,
   aes(time_since_last_purchase, has_churned)
) +
   geom_point() +
   geom_abline(intercept = intercept, slope = slope)
```

Predictions are probabilities of churn, not amounts of churn.



Zooming out

```
ggplot(
  churn,
  aes(days_since_last_purchase, has_churned)
) +
  geom_point() +
  geom_abline(intercept = intercept, slope = slope) +
  xlim(-10, 10) +
  ylim(-0.2, 1.2)
```



What is logistic regression?

- Another type of generalized linear model.
- Used when the response variable is logical. \bullet
- The responses follow logistic (S-shaped) curve.

Linear regression using glm()

glm(has_churned ~ time_since_last_purchase, data = churn, family = gaussian)

Call: glm(formula = has_churned ~ time_since_last_purchase, family = gaussian, data = churn)

Coefficients:

(Intercept) time_since_last_purchase 0.49078 0.06378

Degrees of Freedom: 399 Total (i.e. Null); 398 Residual Null Deviance: 100 Residual Deviance: 98.02 AIC: 578.7

Logistic regression: glm() with binomial family

mdl_recency_glm <- glm(has_churned ~ time_since_last_purchase, data = churn, family = binomial)</pre>

Call: glm(formula = has_churned ~ time_since_last_purchase, family = binomial, data = churn)

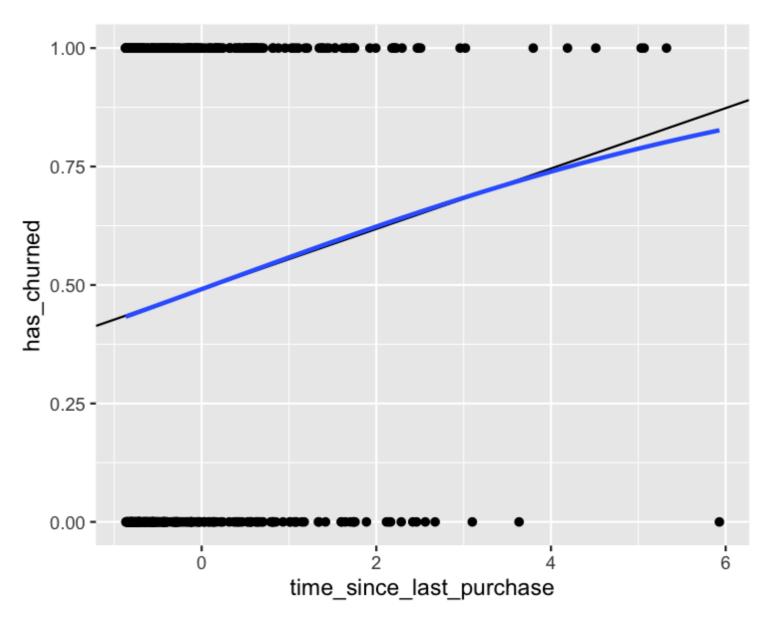
Coefficients:

(Intercept) time_since_last_purchase -0.035020.26921

Degrees of Freedom: 399 Total (i.e. Null); 398 Residual Null Deviance: 554.5 Residual Deviance: 546.4 AIC: 550.4

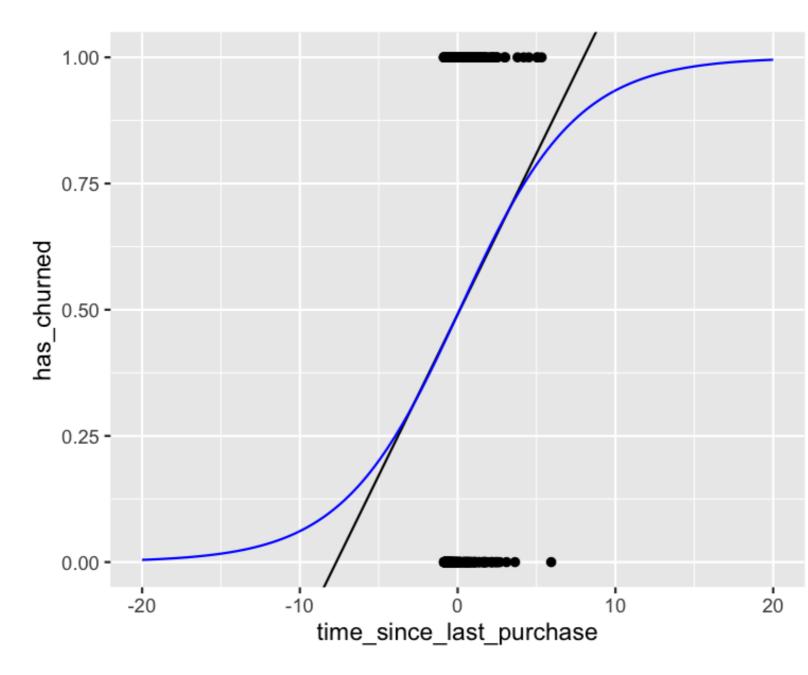
Visualizing the logistic model

```
ggplot(
  churn,
  aes(time_since_last_purchase, has_churned)
) +
  geom_point() +
  geom_abline(
    intercept = intercept, slope = slope
  ) +
  geom_smooth(
    method = "glm",
    se = FALSE,
    method.args = list(family = binomial)
```



R datacamp

Zooming out



& datacamp

Let's practice!

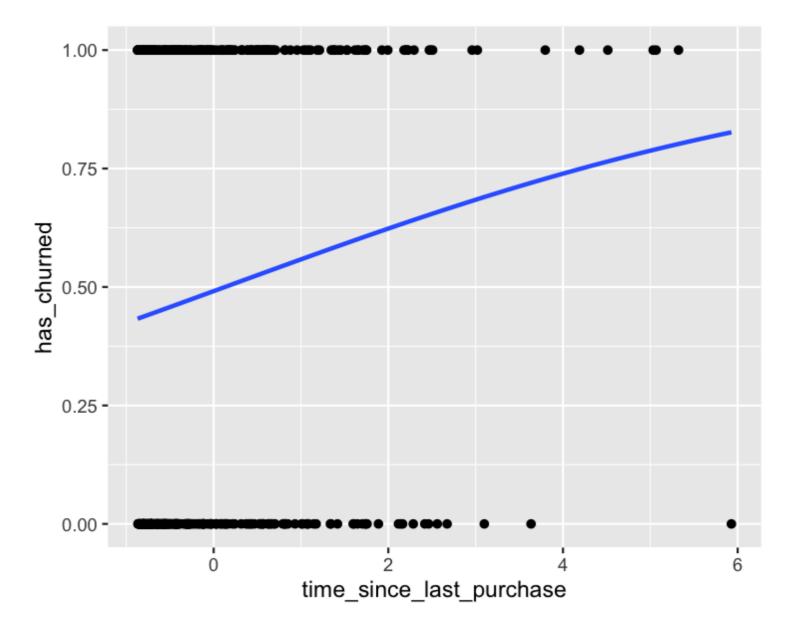
Predictions and odds ratios

INTRODUCTION TO REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

The ggplot predictions

```
plt_churn_vs_recency_base <- ggplot(</pre>
  churn,
  aes(time_since_last_purchase, has_churned)
) +
  geom_point() +
  geom_smooth(
    method = "glm",
    se = FALSE,
    method.args = list(family = binomial)
```



Making predictions

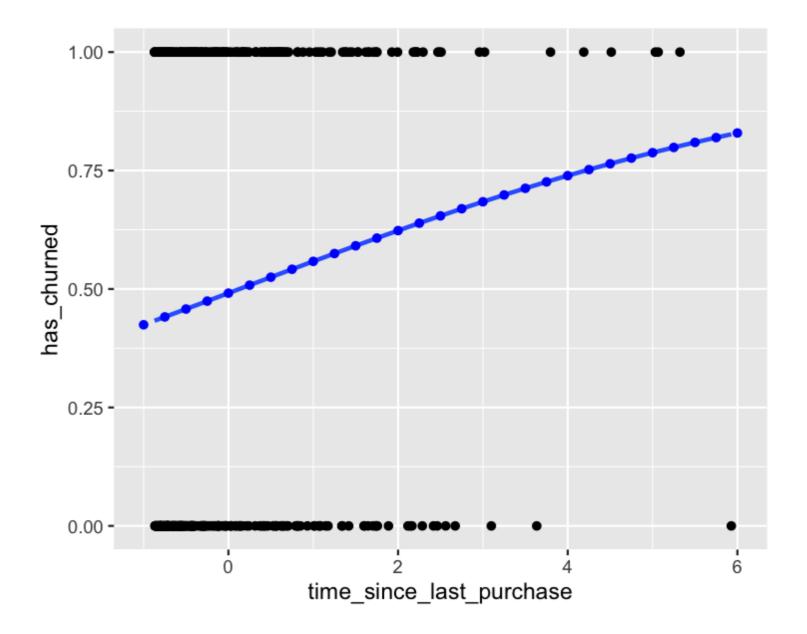
```
mdl_recency <- glm(</pre>
  has_churned ~ time_since_last_purchase, data = churn, family = "binomial"
```

```
explanatory_data <- tibble(</pre>
  time_since_last_purchase = seq(-1, 6, 0.25)
```

```
prediction_data <- explanatory_data %>%
  mutate(
    has_churned = predict(mdl_recency, explanatory_data, type = "response")
```


Adding point predictions

```
plt_churn_vs_recency_base +
  geom_point(
    data = prediction_data,
    color = "blue"
  )
```



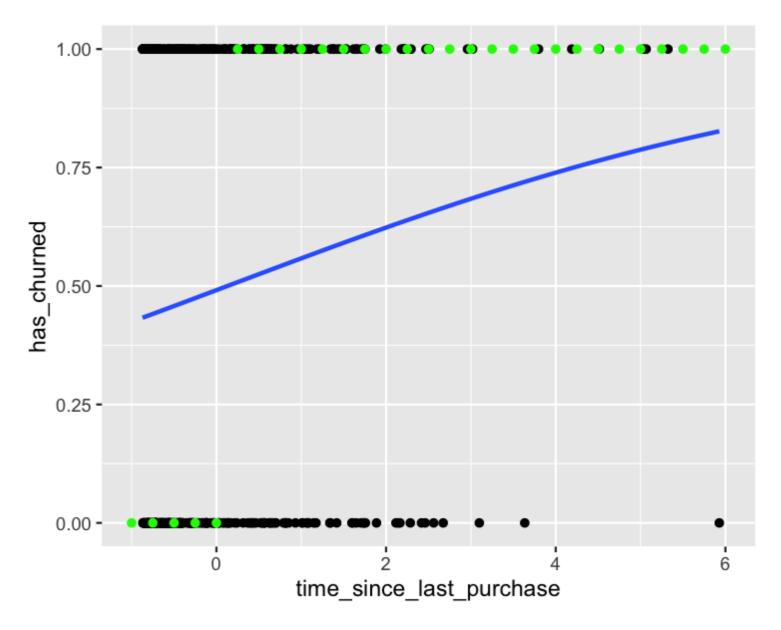
Getting the most likely outcome

```
prediction_data <- explanatory_data %>%
  mutate(
    has_churned = predict(mdl_recency, explanatory_data, type = "response"),
    most_likely_outcome = round(has_churned)
```


Visualizing most likely outcome

```
plt_churn_vs_recency_base +
  geom_point(
    aes(y = most_likely_outcome),
    data = prediction_data,
    color = "green"
```

acamp

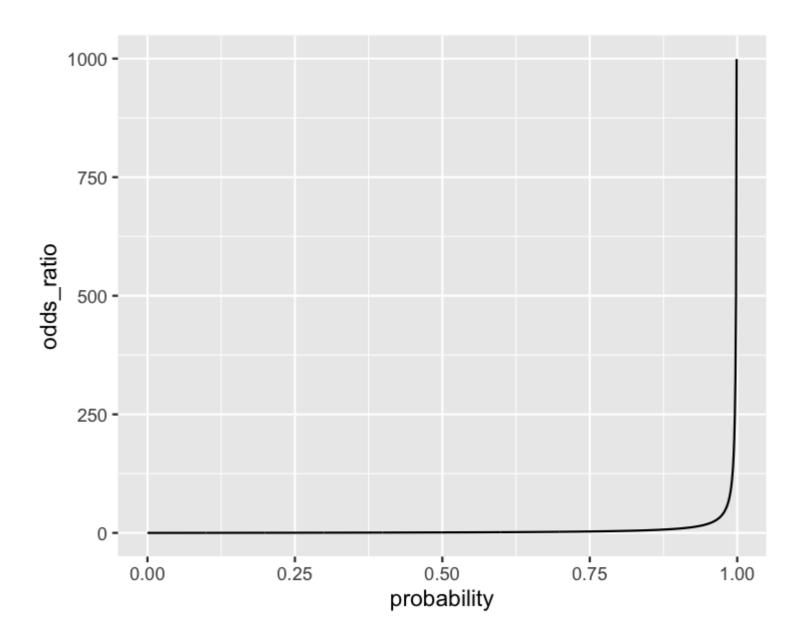


Odds ratios

tacamp

Odds ratio is the probability of something happening divided by the probability that it doesn't.

$$odds_ratio = rac{probability}{(1-probability)} \ odds_ratio = rac{0.25}{(1-0.25)} = rac{1}{3}$$



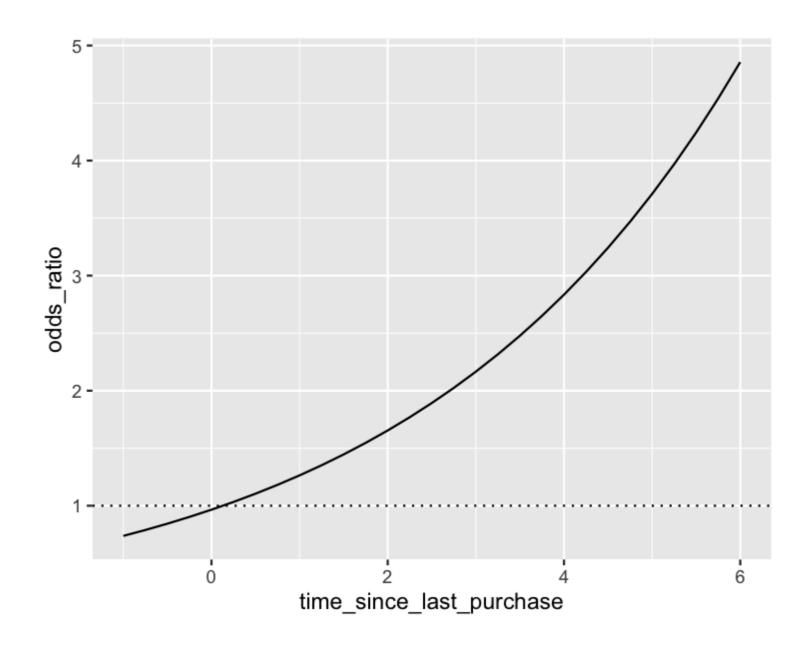
Calculating odds ratio

```
prediction_data <- explanatory_data %>%
  mutate(
    has_churned = predict(mdl_recency, explanatory_data, type = "response"),
    most_likely_response = round(has_churned),
    odds_ratio = has_churned / (1 - has_churned)
```


Visualizing odds ratio

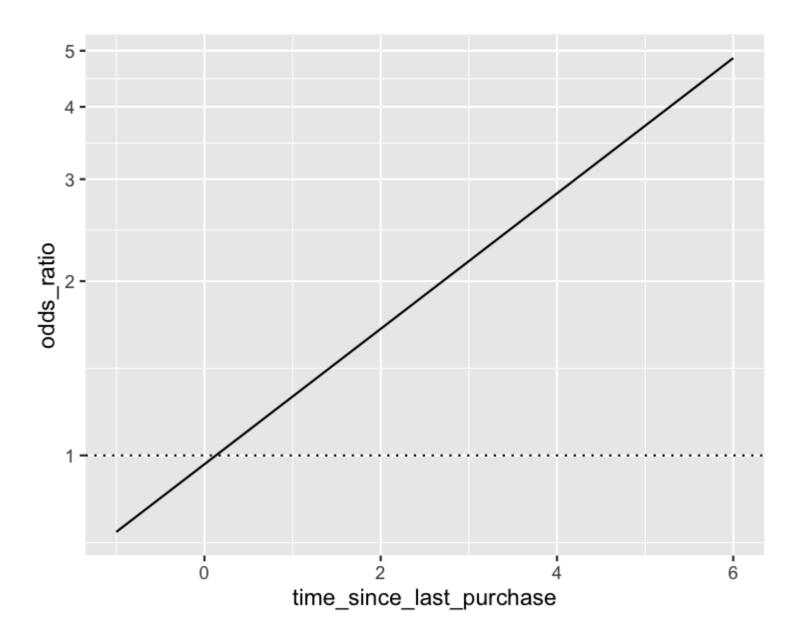
tacamp

```
ggplot(
 prediction_data,
 aes(time_since_last_purchase, odds_ratio)
) +
 geom_line() +
 geom_hline(yintercept = 1, linetype = "dotted")
```



Visualizing log odds ratio

```
ggplot(
   prediction_data,
   aes(time_since_last_purchase, odds_ratio)
) +
   geom_line() +
   geom_hline(yintercept = 1, linetype = "dotted") +
   scale_y_log10()
```



Calculating log odds ratio

```
prediction_data <- explanatory_data %>%
 mutate(
    has_churned = predict(mdl_recency, explanatory_data, type = "response"),
    most_likely_response = round(has_churned),
    odds_ratio = has_churned / (1 - has_churned),
    log_odds_ratio = log(odds_ratio),
    log_odds_ratio2 = predict(mdl_recency, explanatory_data)
```

All predictions together

tm_snc_lst_prch	has_churned	most_lkly_rspns	odds_ratio	log_odds_ratio	log_odds_
0	0.491	0	0.966	-0.035	-1
2	0.623	1	1.654	0.503	
4	0.739	1	2.834	1.042	
6	0.829	1	4.856	1.580	
•••	•••	•••	•••	•••	

Comparing scales

Scale	Are values easy to interpret?	Are changes easy to interpret?	ls precise?
Probability	✓	×	✓
Most likely outcome	✓ ✓	✓	×
Odds ratio	✓	×	✓
Log odds ratio	×	✓	✓

Let's practice!

Quantifying logistic regression fit

INTRODUCTION TO REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

The four outcomes

	actual false	actual true
predicted false	correct	false negative
predicted true	false positive	correct

Confusion matrix: counts of outcomes

mdl_recency <- glm(has_churned ~ time_since_last_purchase, data = churn, family = "binomial")</pre>

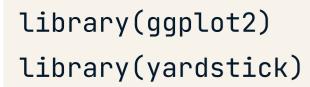
actual_response <- churn\$has_churned</pre>

predicted_response <- round(fitted(mdl_recency))</pre>

outcomes <- table(predicted_response, actual_response)</pre>

	actı	ual_re
predicted_response	() 1
0	142	l 111
1	59	9 89

Visualizing the confusion matrix: mosaic plot



confusion <- conf_mat(outcomes)</pre>

actua	al_re	sponse
0	1	
141	111	
59	89	
	0 141	actual_re 0 1 141 111 59 89

autoplot(confusion)

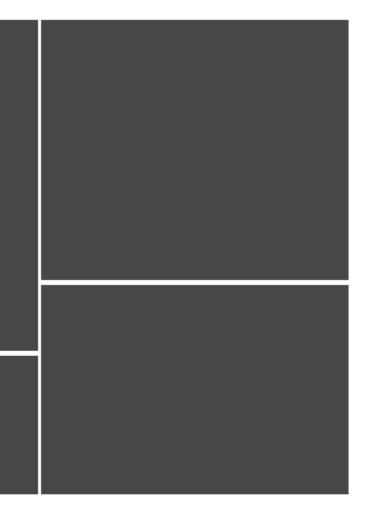
-		
-		

0

1

Predicted

I. 0



Truth

INTRODUCTION TO REGRESSION IN R

I

1

Performance metrics

<pre>summary(confusion, event_level = "second")</pre>	

A tibble: 13 x 3 .metric . e <chr> <C 1 accuracy bi 2 kap bi 3 sens bi 4 spec bi 5 ppv bi 6 npv bi 7 mcc bi 8 j_index bi 9 bal_accuracy bi 10 detection_prevalence bi 11 precision bi 12 recall bi 13 f_meas bi

2 datacamp

stimator	.estimate
hr>	<dbl></dbl>
nary	0.575
nary	0.150
nary	0.445
nary	0.705
nary	0.601
nary	0.560
nary	0.155
nary	0.150
nary	0.575
nary	0.37
nary	0.601
nary	0.445
nary	0.511

Accuracy

summary(confusion) %>% slice(1)

# A tibble:	3 x 3	
.metric	.estimator	.estimate
<chr></chr>	<chr></chr>	<dbl></dbl>
1 accuracy	binary	0.575

Accuracy is the proportion of correct predictions.

$$accuracy = \frac{TN + TP}{TN + FN + FP + TP}$$

confusion

ć	actua	al_re	S
predicted_response	0	1	
0	141	111	
1	59	89	

(141 + 89) / (141 + 111 + 59 + 89)

0.575

datacamp

Sensitivity

<pre>summary(confusion) %>%</pre>	confusion
<pre>slice(3) # A tibble: 1 x 3 .metric .estimator .estimate</pre>	actual_response predicted_response 0 1 0 141 111
<chr> <chr> <chr> <dbl> 1 sens binary 0.445</dbl></chr></chr></chr>	1 59 89
Sensitivity is the proportion of true positives.	89 / (111 + 89)
$sensitivity = rac{TP}{FN+TP}$	0.445

Specificity

<pre>summary(confusion) %>%</pre>	confusion
<pre>slice(4) # A tibble: 1 x 3 .metric .estimator .estimate <chr> <chr> <chr> <chr> <dbl></dbl></chr></chr></chr></chr></pre>	actual_response predicted_response 0 1 0 141 111 1 59 89
1 spec binary 0.705	
Specificity is the proportion of true negatives.	141 / (141 + 59)
$specificity = rac{TN}{TN+FP}$	0.705

Let's practice!

Congratulations INTRODUCTION TO REGRESSION IN R

Richie Cotton Data Evangelist at DataCamp

You learned things

Chapter 1

- Fit a simple linear regression
- Interpret coefficients

Chapter 3

- Quantifying model fit
- Outlier, leverage, and influence

Chapter 2

- Make predictions
- Regression to the mean
- Transforming variables

Chapter 4

- Fit a simple logistic regression
- Make predictions
- Get performance from confusion matrix

Multiple explanatory variables

Multiple and Logistic Regression in R

Unlocking advanced skills

- Modeling with Data in the Tidyverse
- **Generalized Linear Models in R**
- Machine Learning with caret in R
- **Bayesian Regression Modeling with** \bullet rstanarm

Regression is important everywhere

- Credit Risk Modeling in R
- **Building Response Models in R**
- Human Resource Analytics, Exploring **Employee Data in R**
- **Predictive Analytics Using Networked** Data in R

Let's practice!

