What are the chances?

INTRODUCTION TO STATISTICS IN R

Maggie Matsui Content Developer, DataCamp

Measuring chance

What's the probability of an event?

$$P(\mathrm{event}) = rac{\# \,\mathrm{ways}\,\mathrm{event}\,\mathrm{can}\,\mathrm{happen}}{\mathrm{total}\,\#\,\mathrm{of}\,\mathrm{possible}\,\mathrm{outcomes}}$$

Example: a coin flip

$$P({
m heads}) = rac{1 {
m way to get heads}}{2 {
m possible outcomes}} = rac{1}{2} = 50\%$$

Assigning salespeople

Damian

Assigning salespeople

$$P(\mathrm{Brian}) = rac{1}{4} = 25\%$$

Damian

Sampling from a data frame

sales_counts	<pre>sales_counts %>% sample_n(1)</pre>
name n_sales	
1 Amir 178	name n_sales
2 Brian 126	1 Brian 126
3 Claire 75	
4 Damian 69	sales_counts %>%
	<pre>sample_n(1)</pre>

	name	n_sa	les
1	Claire	9	75

Setting a random seed

<pre>set.seed(5)</pre>	<pre>set.seed(5)</pre>	
sales_counts %>%	sales_counts %>%	
<pre>sample_n(1)</pre>	<pre>sample_n(1)</pre>	
name n_sales	name n_sales	
1 Brian 126	1 Brian 126	

R datacamp

A second meeting

Sampling without replacement

A second meeting

$$P(ext{Claire}) = rac{1}{3} = 33\%$$

INTRODUCTION TO STATISTICS IN R

Damian

Sampling twice in R

sales_counts %>% sample_n(2)

	name	n_sales
1	Brian	126
2	Clair	e 75

Sampling with replacement

Sampling with replacement

$$P(ext{Claire}) = rac{1}{4} = 25\%$$

Damian

Sampling with replacement in R

sales_counts %>%	5 meetings:		
<pre>sample_n(2, replace = IRUE)</pre>	<pre>sample(sales_team,</pre>		
name n_sales 1 Brian 126 2 Claire 75	name n_sales 1 Brian 126 2 Claire 75 3 Brian 126		
	4 Brian 126		

5 Amir 178

INTRODUCTION TO STATISTICS IN R

5, replace = TRUE)

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with Replacement

Second pick

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with replacement = each pick is independent

INTRODUCTION TO STATISTICS IN R

25%

Dependent events

Two events are **dependent** if the probability of the second event *is* affected by the outcome of the first event.

Sampling without Replacement

Second pick

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without Replacement

Second pick

Dependent events

Two events are **dependent** if the probability of the second event *is* affected by the outcome of the first event.

Sampling without replacement = each pick is dependent

Let's practice! INTRODUCTION TO STATISTICS IN R

Discrete distributions

INTRODUCTION TO STATISTICS IN R

Maggie Matsui Content Developer, DataCamp

Rolling the dice

1⁄6 1⁄6 1⁄6 1⁄6 1⁄6

Choosing salespeople

Probability distribution

Describes the probability of each possible outcome in a scenario

Expected value: mean of a probability distribution

Expected value of a fair die roll = $(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) + (3 \times \frac{1}{6}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.5$

Visualizing a probability distribution

& datacamp

Probability = area

$P(\text{die roll}) \leq 2 = ?$

R datacamp

Probability = area

$P(ext{die roll}) \leq 2 = 1/3$

R datacamp

Uneven die

Expected value of uneven die roll = $(1 \times \frac{1}{6}) + (2 \times 0) + (3 \times \frac{1}{3}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.67$

Visualizing uneven probabilities

R datacamp

Adding areas

$P(ext{uneven die roll}) \leq 2 = ?$

datacamp

Adding areas

$P(ext{uneven die roll}) \leq 2 = 1/6$

R datacamp

Discrete probability distributions

Describe probabilities for discrete outcomes

Fair die

Uneven die

Discrete uniform distribution

Sampling from discrete distributions

rolls_10 <- die %>% sample_n(10, replace = TRUE) rolls_10

itacamp

Visualizing a sample

ggplot(rolls_10, aes(n)) + geom_histogram(bins = 6)

tacamp

Sample distribution vs. theoretical distribution

Sample of 10 rolls

Theoretical probability distribution

mean(die\$n) = 3.5

mean(rolls_10\$n) = 3.0

acamp

4	5	6	

A bigger sample

Sample of 100 rolls

Theoretical probability distribution

mean(die\$n) = 3.5

latacamp

_		_			_		
	4	1	f	5	e	5	

6

An even bigger sample

Sample of 1000 rolls

Theoretical probability distribution

mean(die\$n) = 3.5

tacamp

5

6

4
Law of large numbers

As the size of your sample increases, the sample mean will approach the expected value.

Sample size	Mean
10	3.00
100	3.36
1000	3.53

Let's practice! INTRODUCTION TO STATISTICS IN R

Continuous distributions

INTRODUCTION TO STATISTICS IN R

Maggie Matsui Content Developer, DataCamp

Waiting for the bus

1:48 2pm

Continuous uniform distribution

Wait time (mins)

Continuous uniform distribution

Wait time (mins)

R datacamp

Probability still = area

R datacamp

Probability still = area

R datacamp

Probability still = area

tacamp

Uniform distribution in R

 $P(ext{wait time} \leq 7)$

punif(7, min = 0, max = 12)

0.5833333

lower.tail

punif(7, min = 0, max = 12, lower.tail = FALSE)

0.4166667

$$P(4 \leq ext{wait time} \leq 7)$$

12

 $P(4 \leq \text{wait time} \leq 7)$

12

$$P(4 \leq ext{wait time} \leq 7)$$

punif(7, min = 0, max = 12) - punif(4, min = 0, max = 12)

0.25

Total area = 1

R datacamp

Total area = 1

& datacamp

Other continuous distributions

Other continuous distributions

tacamp

Other special types of distributions

Normal distribution

Poisson distribution

atacamp

Let's practice! INTRODUCTION TO STATISTICS IN R

The binomial distribution

INTRODUCTION TO STATISTICS IN R

Maggie Matsui Content Developer, DataCamp

Coin flipping

50% 50% **T**

R datacamp

Binary outcomes

A single flip

rbinom(# of trials, # of coins, # probability of heads/success)

1 = head, 0 = tails

rbinom(1, 1, 0.5)

1

rbinom(1, 1, 0.5)

 $\mathbf{0}$

One flip many times

rbinom(8, 1, 0.5)

10010010

rbinom(8, 1, 0.5) 8 flips of 1 coin with 50% chance of success

Many flips one time

rbinom(1, 8, 0.5)

3

acamp

rbinom(1, 8, 0.5) 1 flip of 8 coins with 50% chance of success

Many flips many times

rbinom(10, 3, 0.5)

2 0 1 0 1 1 3 3 3 1

10 flips of 3 coins with 50%

INTRODUCTION TO STATISTICS IN R

rbinom(10, 3, 0.5)

chance of success

Other probabilities

rbinom(10, 3, 0.25)

1 1 0 0 1 1 1 1 2 1

25%

Binomial distribution

Probability distribution of the number of successes in a sequence of independent trials

E.g. Number of heads in a sequence of coin flips

Described by n and p

- n: total number of trials
- *p*: probability of success

What's the probability of 7 heads?

P(heads = 7)

dbinom(num heads, num trials, prob of heads) dbinom(7, 10, 0.5)

0.1171875

What's the probability of 7 or fewer heads?

 $P(\text{heads} \leq 7)$

pbinom(7, 10, 0.5)

0.9453125

What's the probability of more than 7 heads?

P(heads > 7)

pbinom(7, 10, 0.5, lower.tail = FALSE)

0.0546875

1 - pbinom(7, 10, 0.5)

0.0546875

Expected value

Expected value $= n \times p$

Expected number of heads out of 10 flips = 10 imes 0.5 = 5

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of *independent* trials

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of *independent* trials

Probabilities of second trial are altered due to outcome of the first

If trials are not independent, the binomial distribution does not apply!

Let's practice! INTRODUCTION TO STATISTICS IN R

