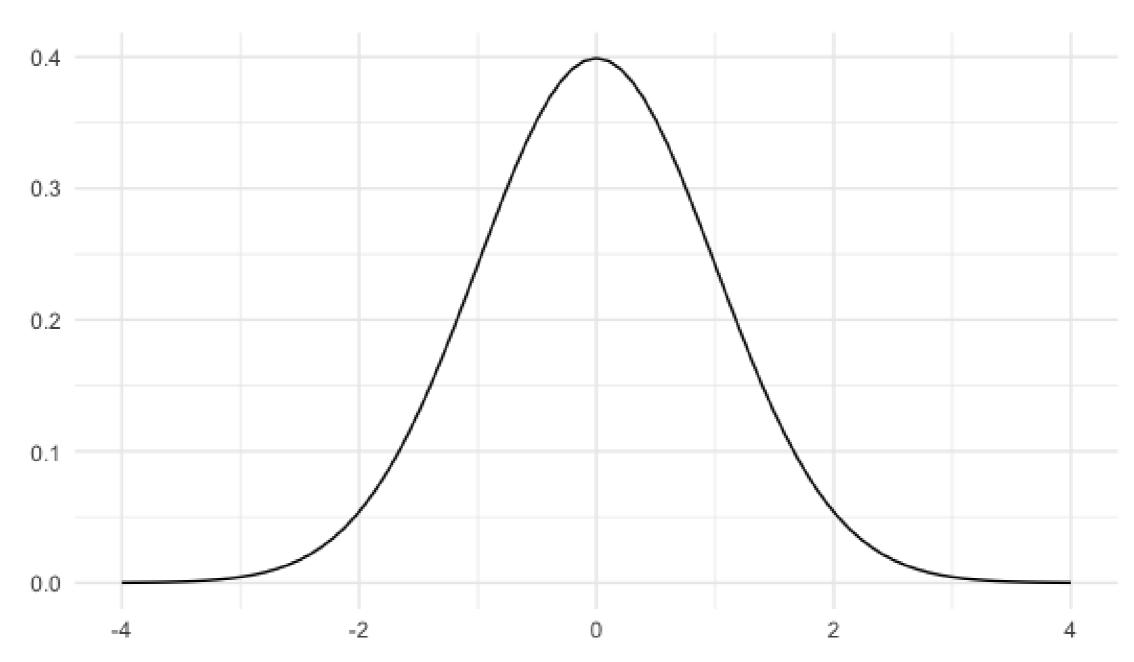
The normal distribution

INTRODUCTION TO STATISTICS IN R

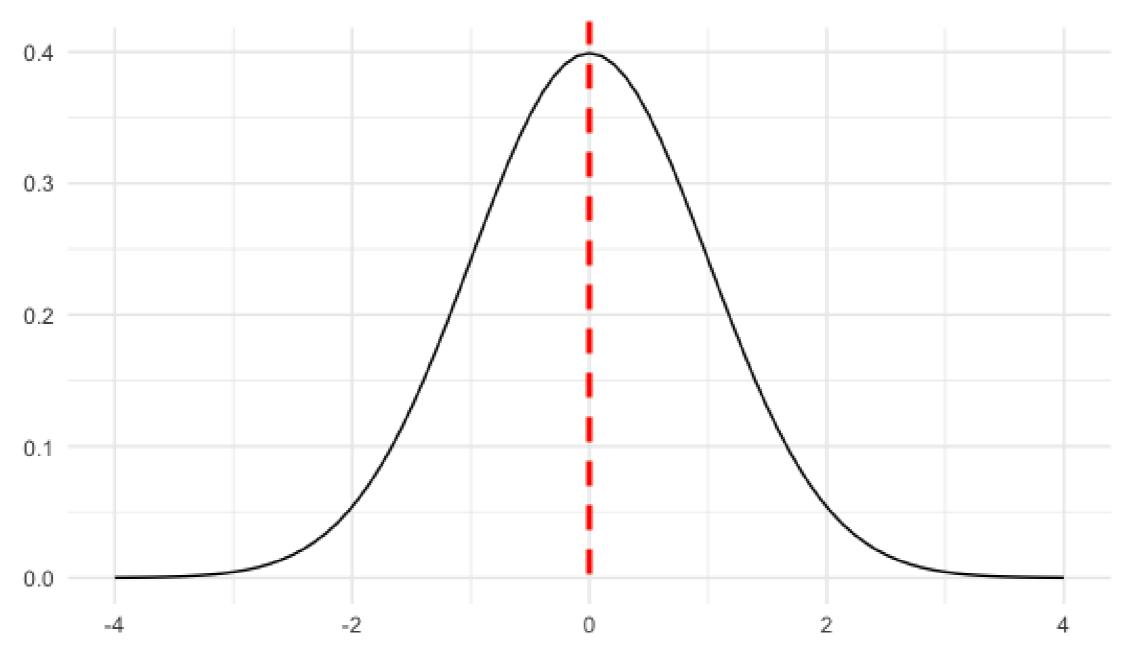
Maggie Matsui Content Developer, DataCamp

What is the normal distribution?



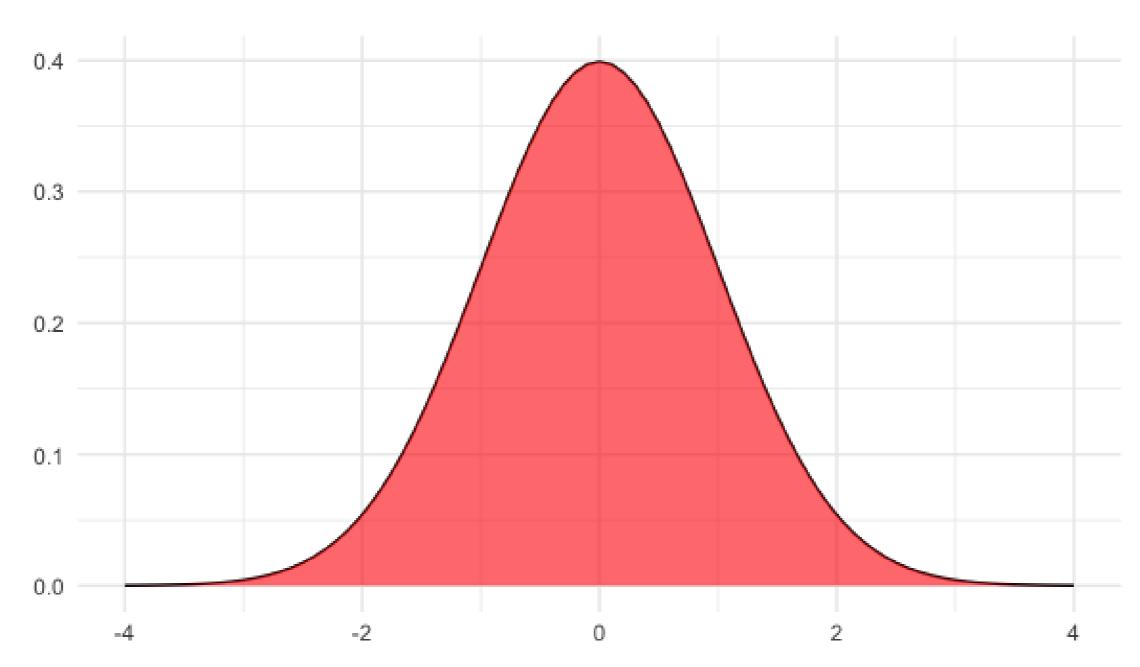
& datacamp

Symmetrical



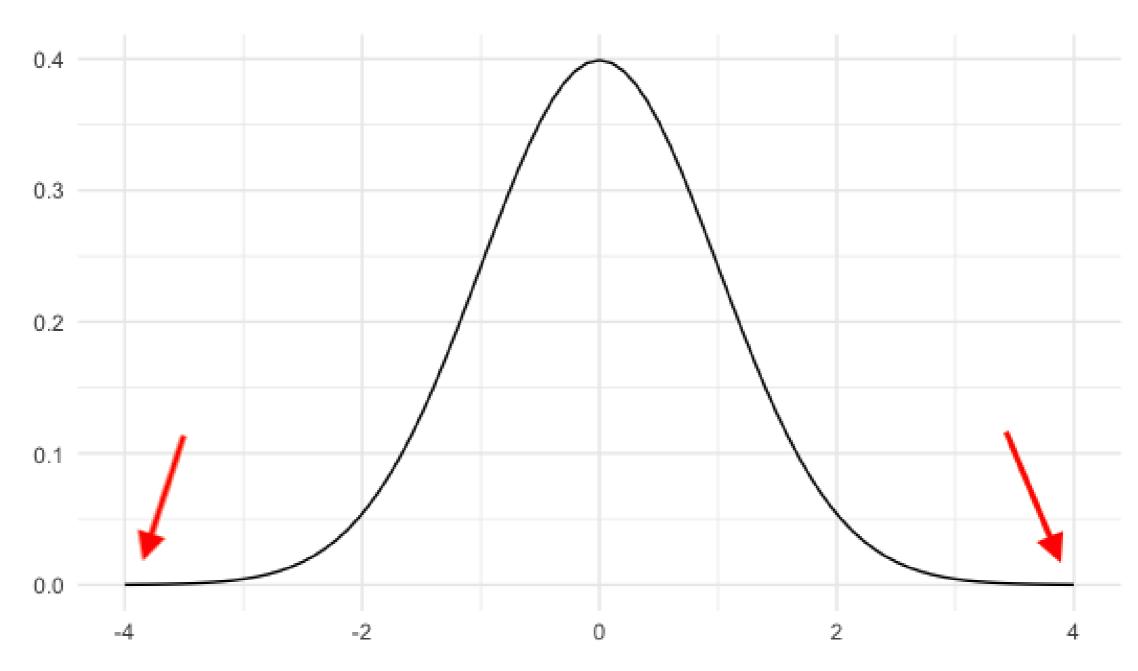
R datacamp

Area = 1



R datacamp

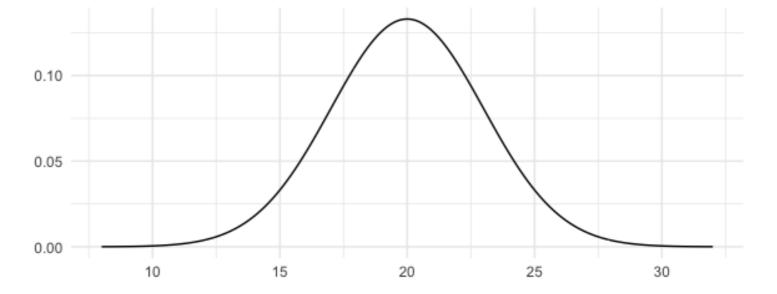
Curve never hits 0



R datacamp

Described by mean and standard deviation

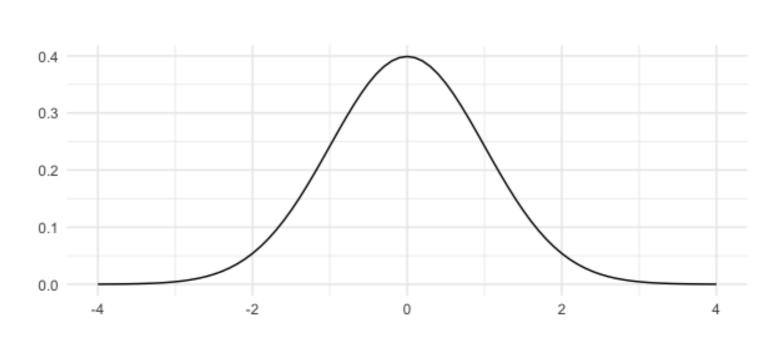
Standard deviation: 3



Standard normal distribution

Mean: 0

Standard deviation: 1



Described by mean and standard deviation



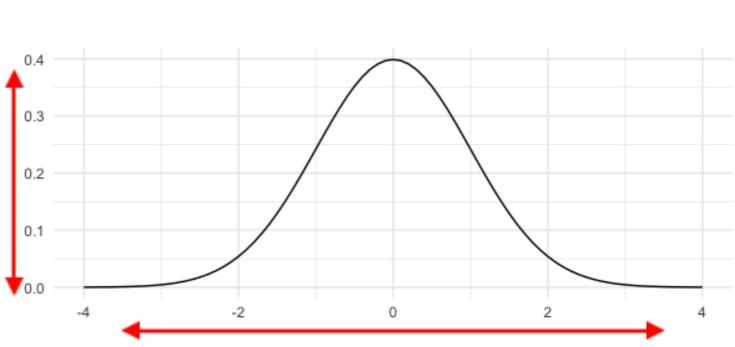
Mean: 20

Standard deviation: 3

Standard normal distribution

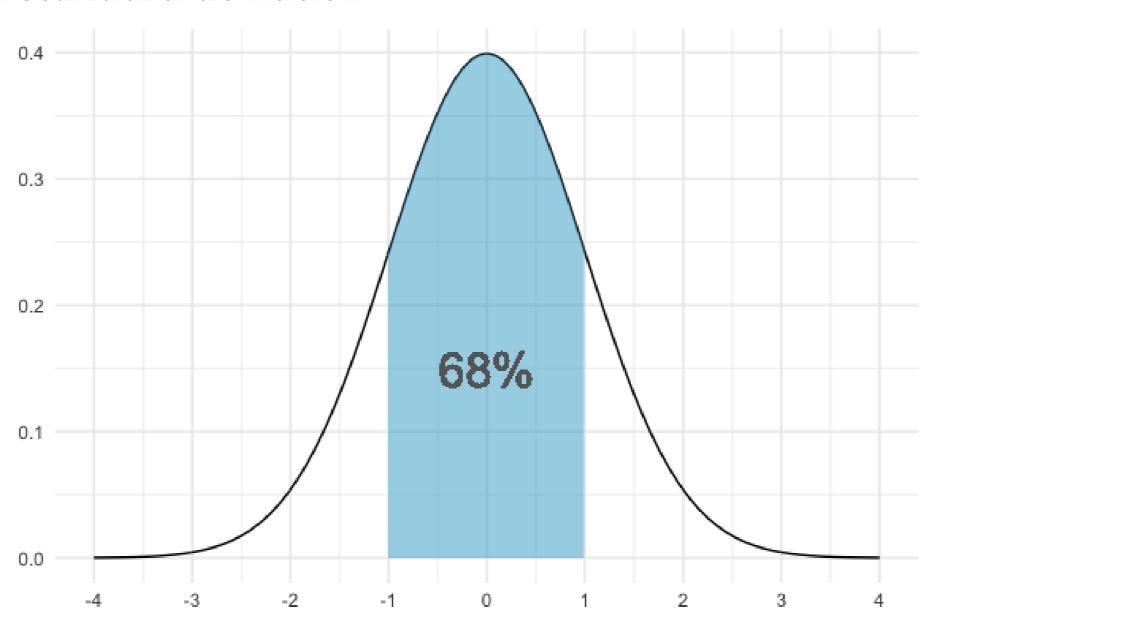
Mean: 0

Standard deviation: 1



Areas under the normal distribution

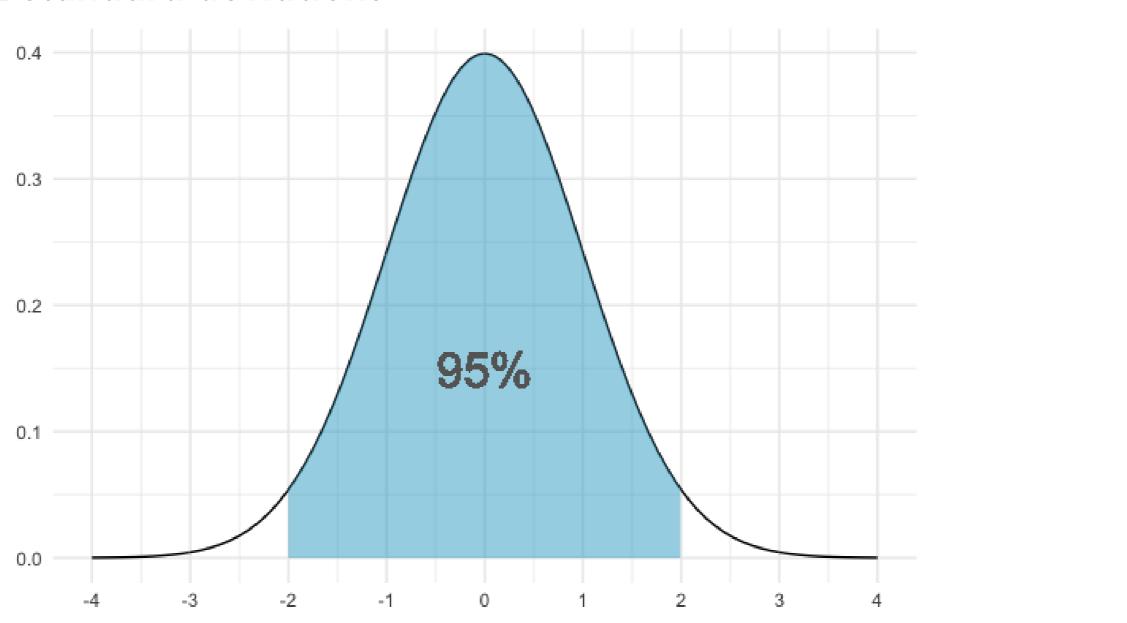
68% falls within 1 standard deviation



& datacamp

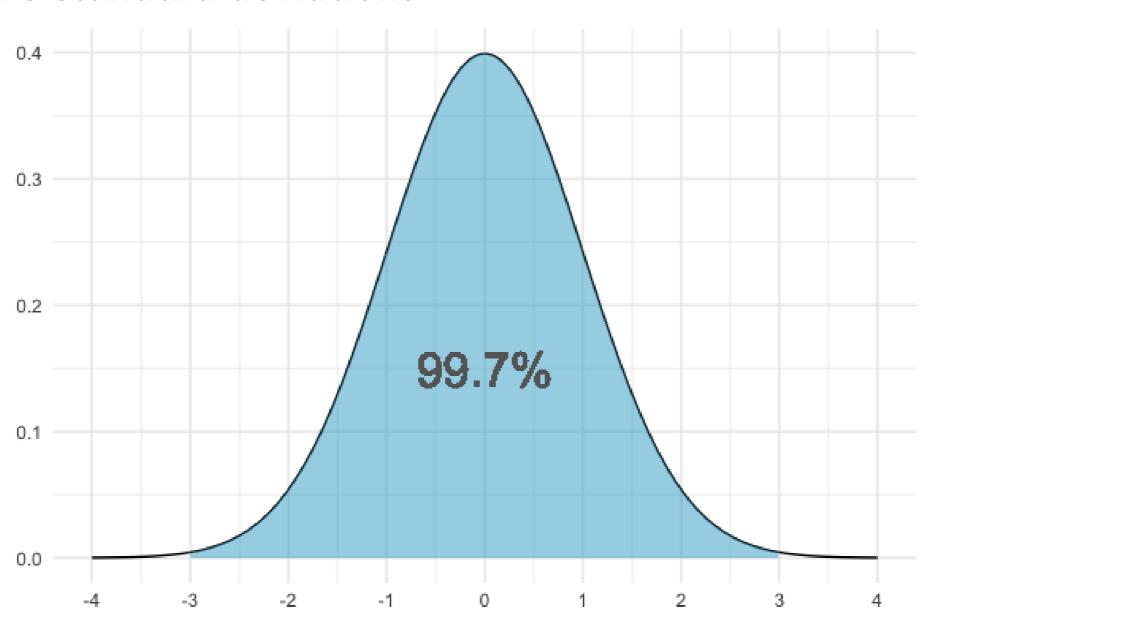
Areas under the normal distribution

95% falls within 2 standard deviations



Areas under the normal distribution

99.7% falls within 3 standard deviations

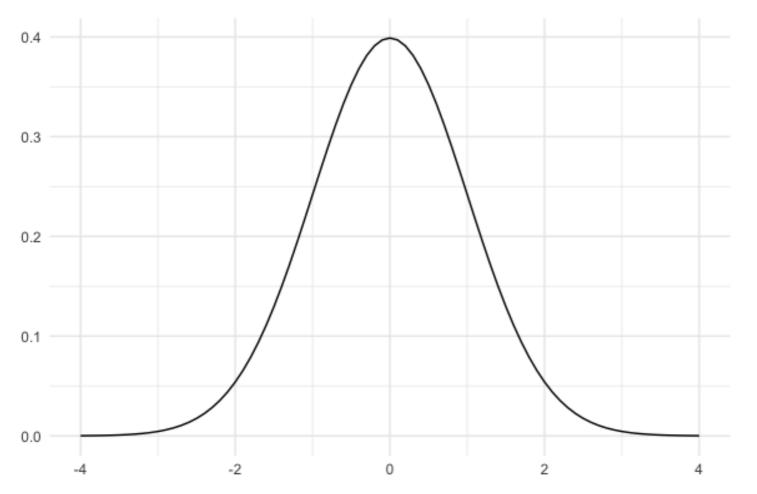


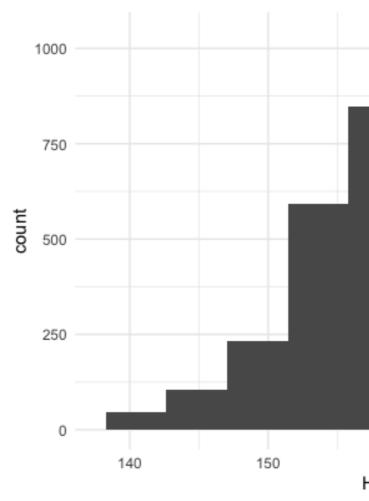
Lots of histograms look normal

Normal distribution

acamp

Women's heights from NHANES



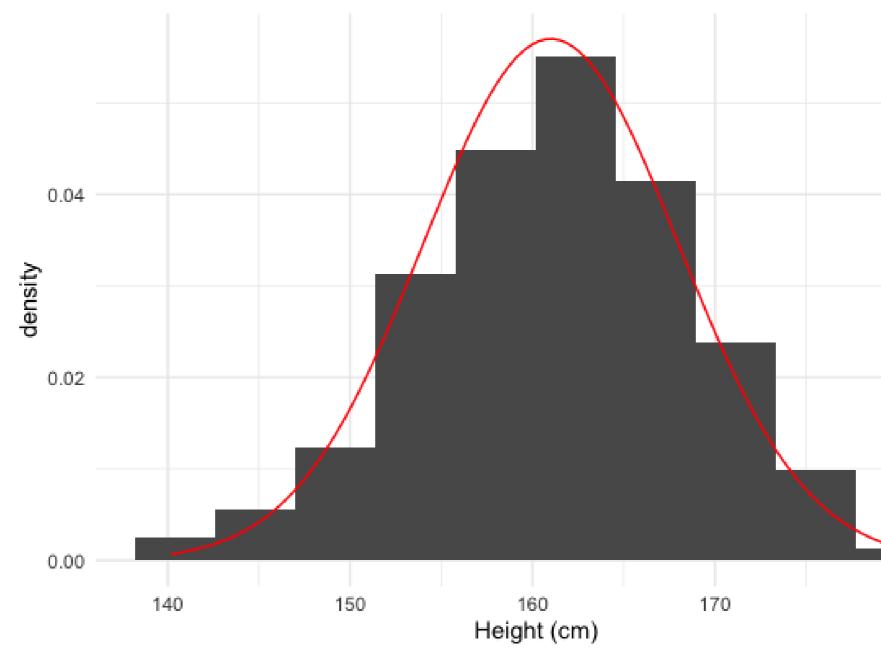


Mean: 161 cm

160 170 180 Height (cm)

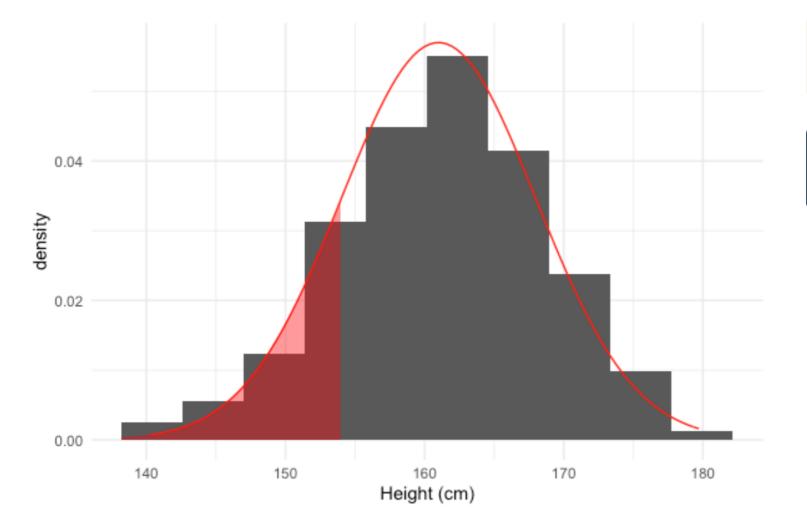
Standard deviation: 7 cm

Approximating data with the normal distribution



R datacamp

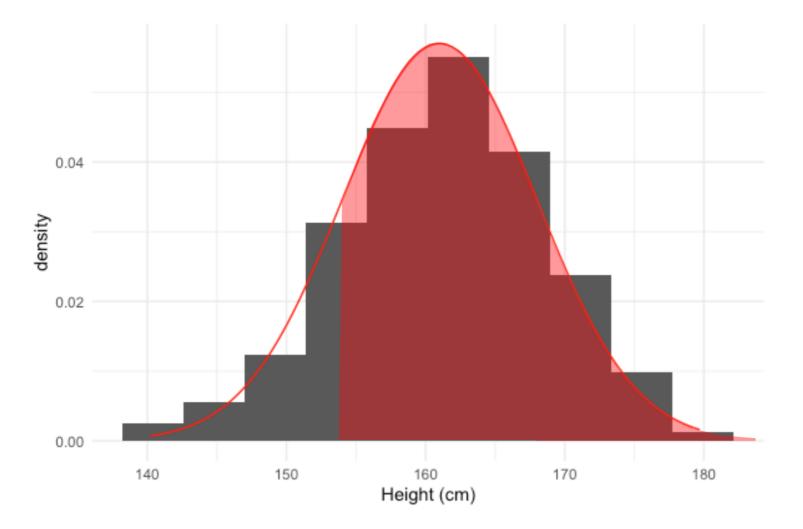
What percent of women are shorter than 154 cm?



pnorm(154, mean = 161, sd = 7)0.159

16% of women in the survey are shorter than 154 cm

What percent of women are taller than 154 cm?

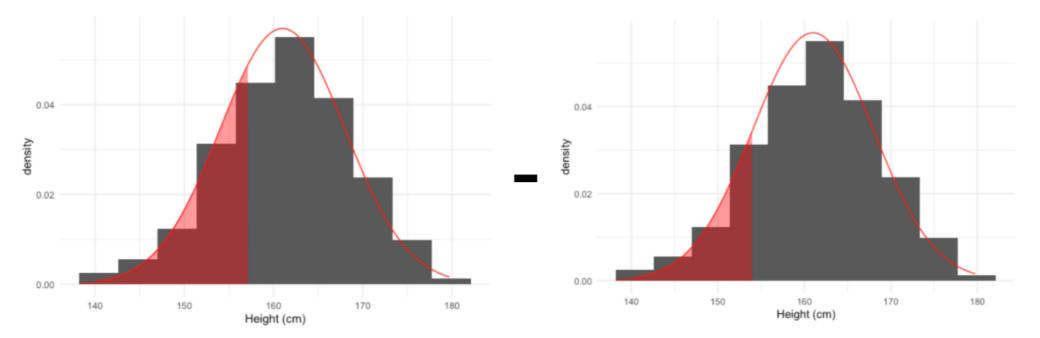


pnorm(154, mean = 161, sd = 7,lower.tail = FALSE)

0.8413447

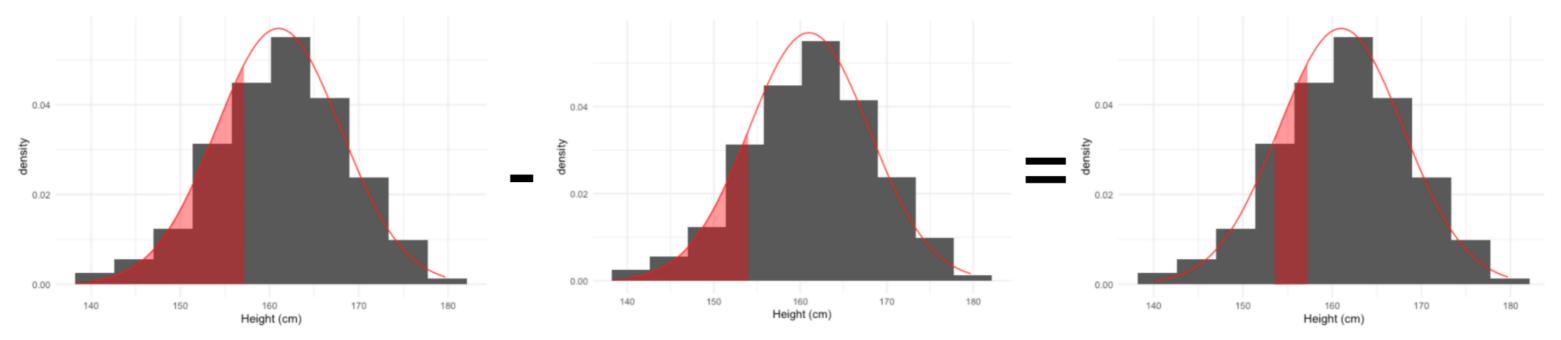
tacamp

What percent of women are 154-157 cm?



pnorm(157, mean = 161, sd = 7) - pnorm(154, mean = 161, sd = 7)

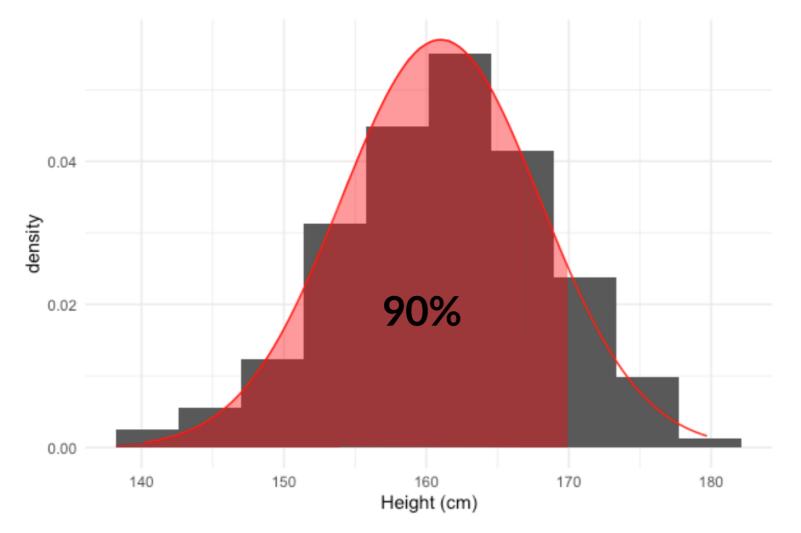
What percent of women are 154-157 cm?



pnorm(157, mean = 161, sd = 7) - pnorm(154, mean = 161, sd = 7)

0.1252

What height are 90% of women shorter than?

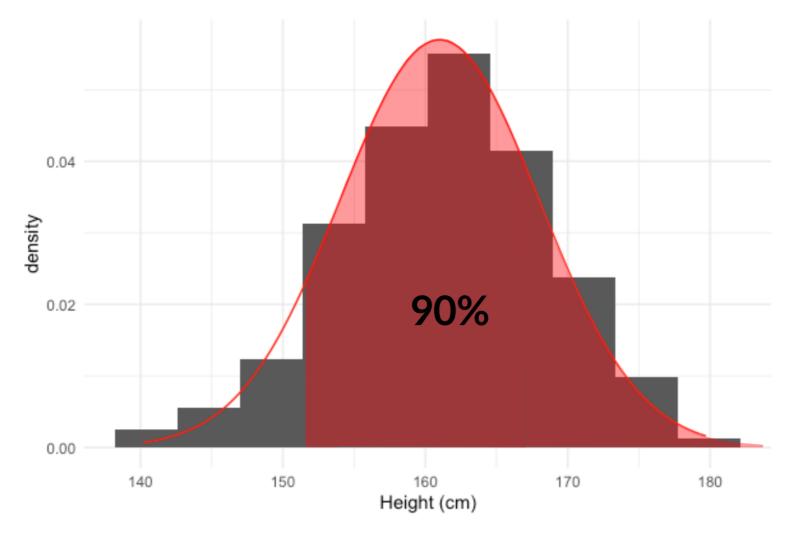


qnorm(0.9, mean = 161, sd = 7)

169.9709

tacamp

What height are 90% of women taller than?



qnorm(0.9, mean = 161, sd = 7, lower.tail = FALSE)

152.03

tacamp

Generating random numbers

Generate 10 random heights rnorm(10, mean = 161, sd = 7)

159.35 157.34 149.85 156.75 163.53 156.33 157.22 171.44 158.10 170.12

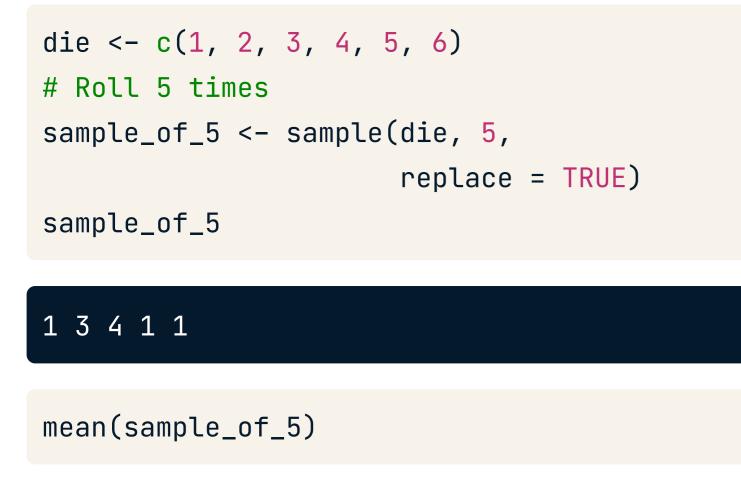
Let's practice! INTRODUCTION TO STATISTICS IN R

The central limit theorem

INTRODUCTION TO STATISTICS IN R

Maggie Matsui Content Developer, DataCamp

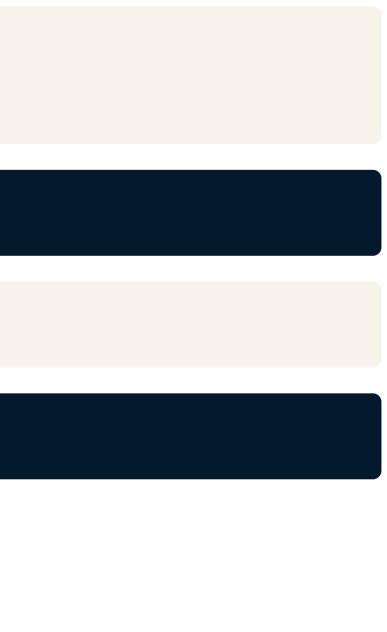
Rolling the dice 5 times



2.0

Rolling the dice 5 times

sample(die, 5, replace = TRUE) %>% mean()



Rolling the dice 5 times 10 times

Repeat 10 times:

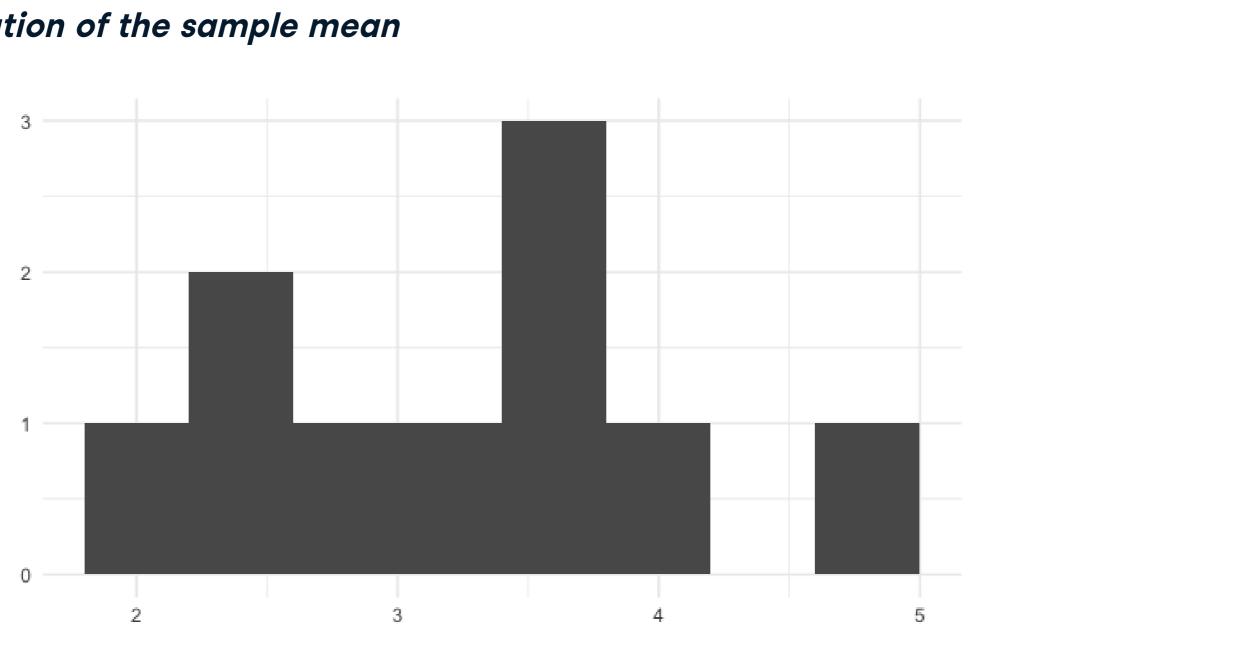
- Roll 5 times
- Take the mean

sample_means <- replicate(10, sample(die, 5, replace = TRUE) %>% mean()) sample_means

3.8 4.0 3.8 3.6 3.2 4.8 2.6 3.0 2.6 2.0

Sampling distributions

Sampling distribution of the sample mean

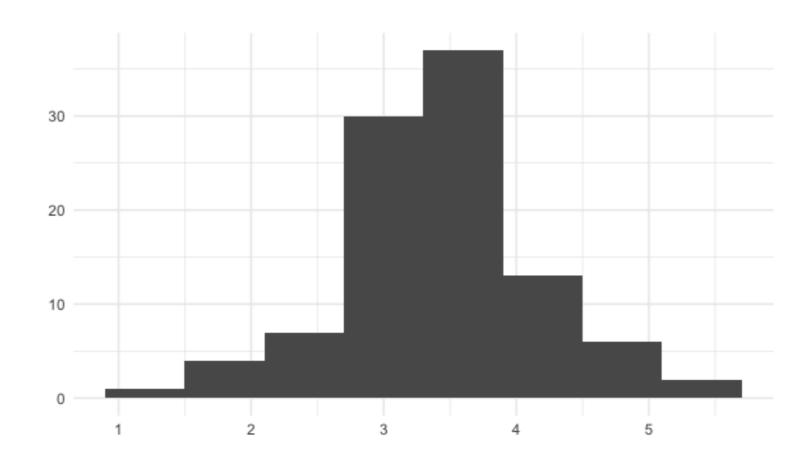


acamb

100 sample means

replicate(100, sample(die, 5, replace = TRUE) %>% mean())

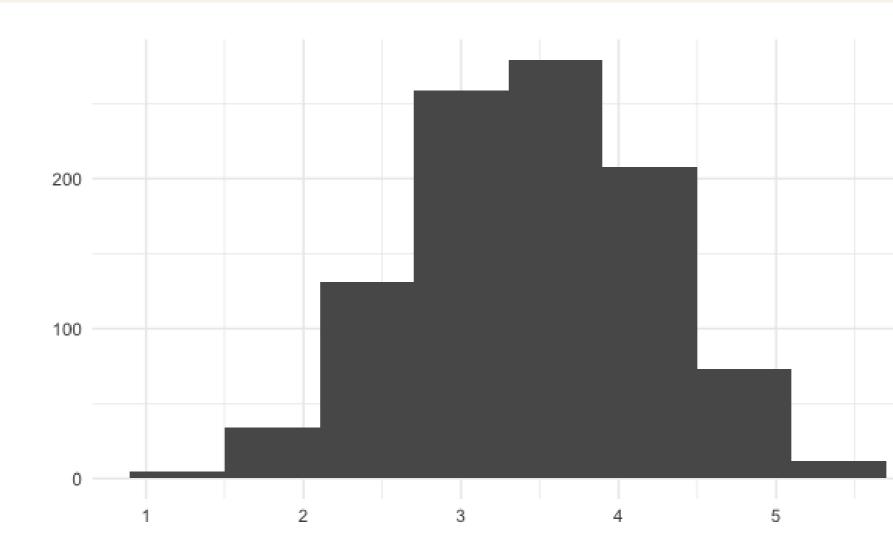
2.8 3.2 1.8 4.6 4.0 2.8 4.4 2.4 3.4 2.8 4.2 3.4 ... 2.2 3.8 3.6 3.8 4.4 4.8 2.4



itacamp

1000 sample means

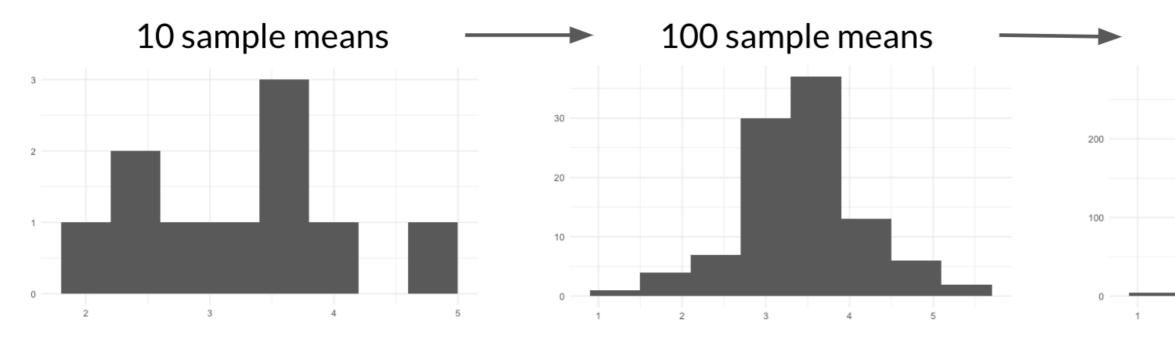
sample_means <- replicate(1000, sample(die, 5, replace = TRUE) %>% mean())



acamp

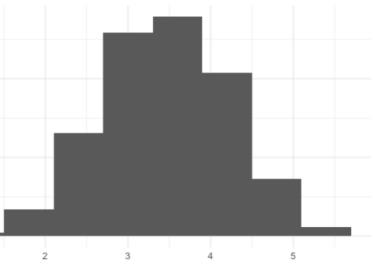
Central limit theorem

The sampling distribution of a statistic becomes closer to the normal distribution as the number of trials increases.



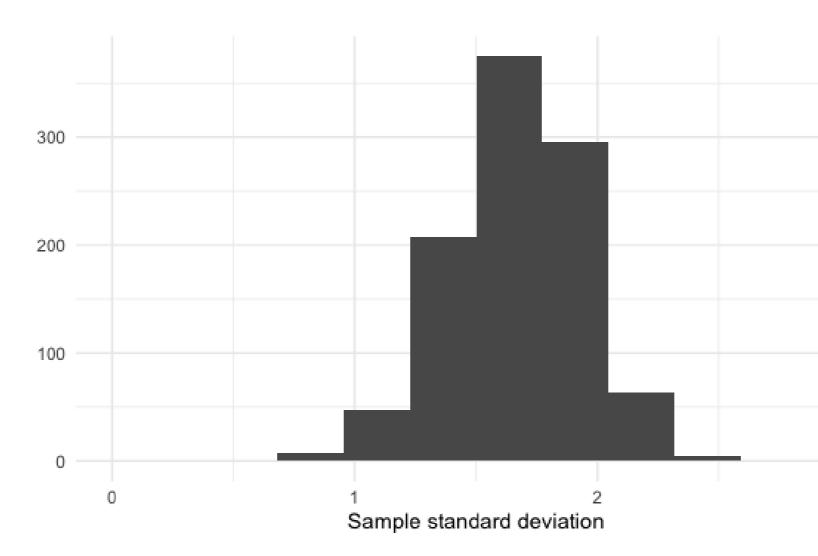
* Samples should be random and independent

1000 sample means



Standard deviation and the CLT

replicate(1000, sample(die, 5, replace = TRUE) %>% sd())



R datacamp

Proportions and the CLT

sales_team <- c("Amir", "Brian", "Claire", "Damian")</pre> sample(sales_team, 10, replace = TRUE)

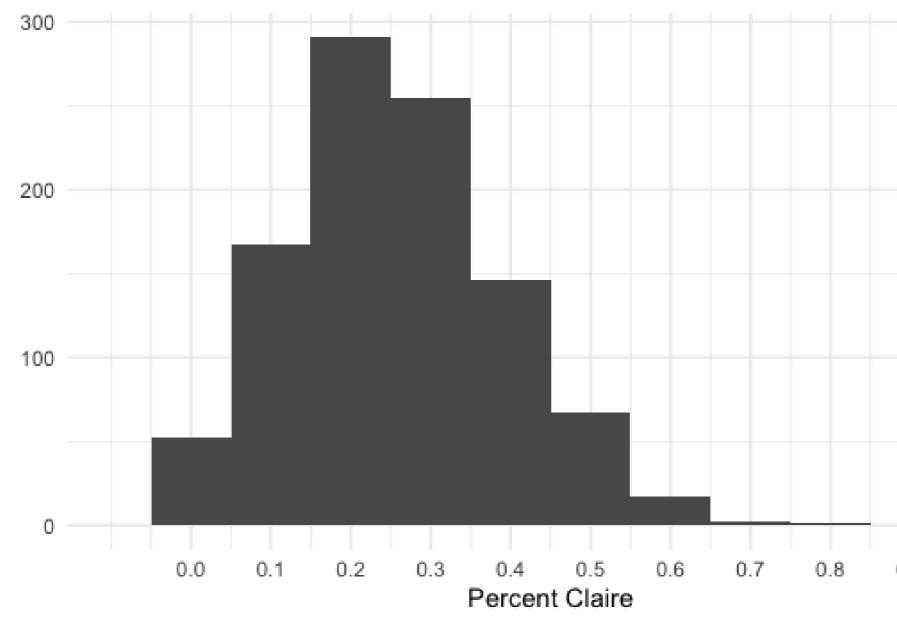
"Claire" "Brian" "Brian" "Brian" "Damian" "Damian" "Brian" "Amir" "Amir"

sample(sales_team, 10, replace = TRUE)

"Amir" "Amir" "Claire" "Amir" "Amir" "Brian" "Amir" "Claire" "Claire" "Cla<u>ire</u>"

"Brian"

Sampling distribution of proportion



datacamp

Mean of sampling distribution

Estimate expected value of die mean(sample_means)

3.48

Estimate proportion of "Claire"s mean(sample_props)

0.26

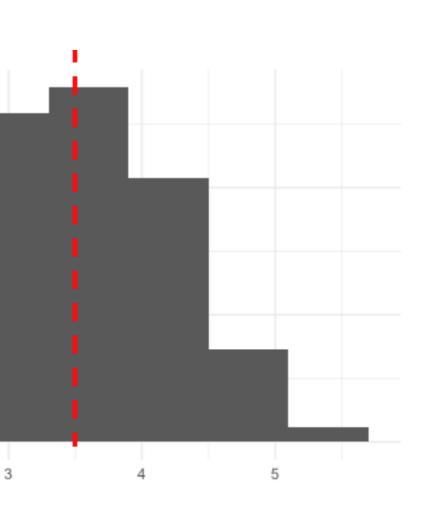
Estimate characteristics of unknown underlying distribution

• More easily estimate characteristics of large populations

2

200

100



Let's practice! INTRODUCTION TO STATISTICS IN R

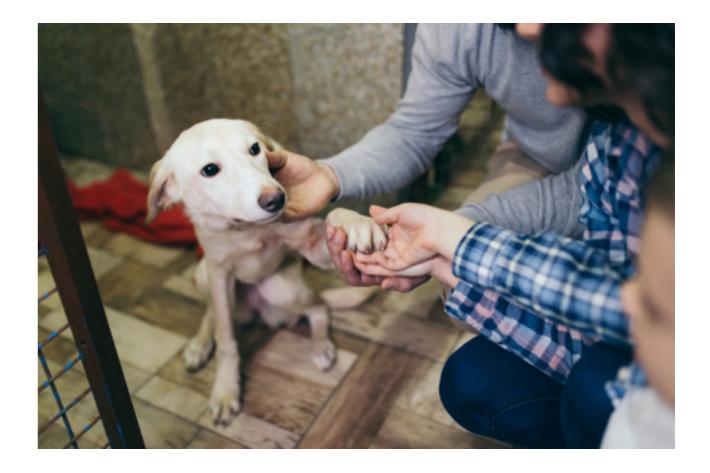
The Poisson distribution

INTRODUCTION TO STATISTICS IN R

Maggie Matsui Content Developer, DataCamp

Poisson processes

- Events appear to happen at a certain rate, but completely at random
- Examples
 - Number of animals adopted from an animal shelter per week
 - Number of people arriving at a restaurant per hour
 - Number of earthquakes in California per year



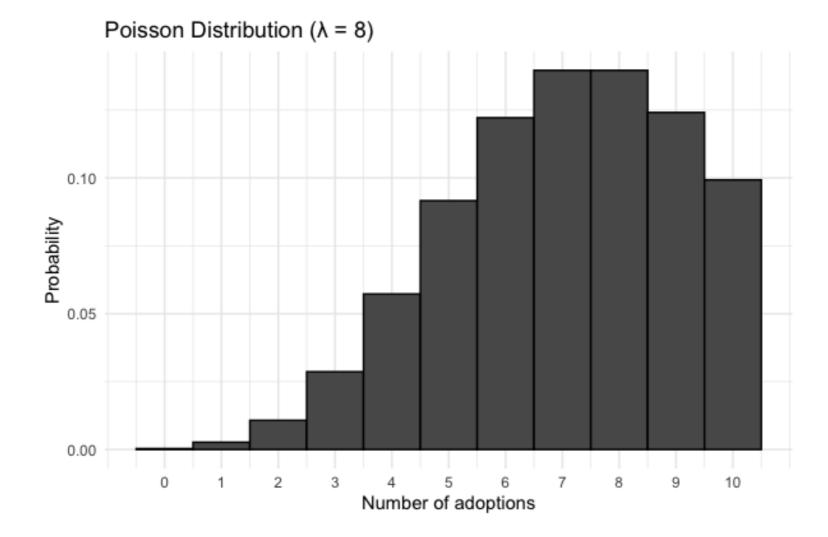
Poisson distribution

- Probability of some # of events occurring over a fixed period of time \bullet
- Examples
 - Probability of \geq 5 animals adopted from an animal shelter per week 0
 - Probability of 12 people arriving at a restaurant per hour 0
 - Probability of < 20 earthquakes in California per year 0

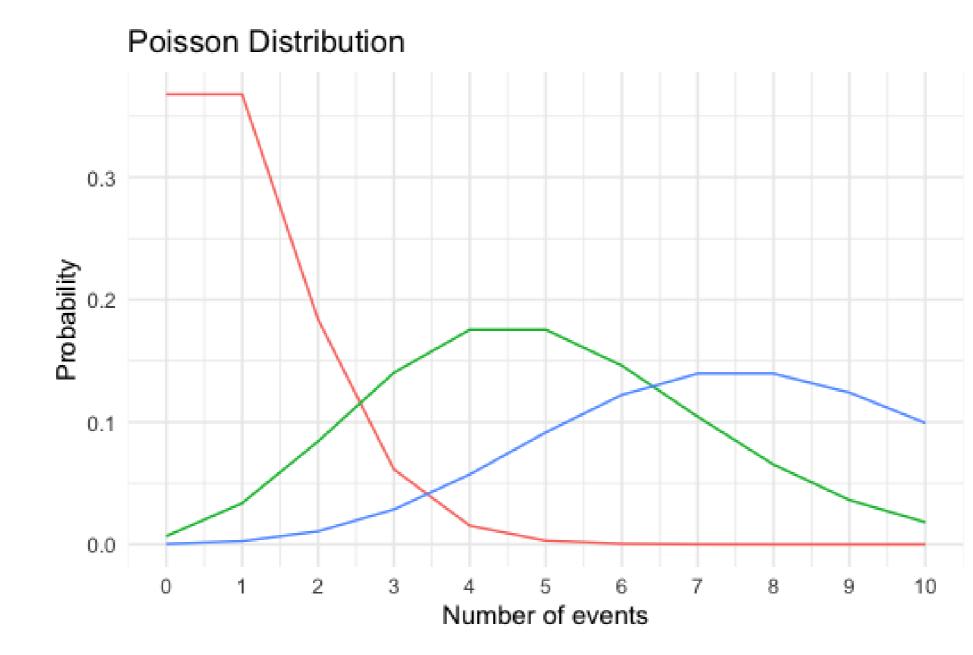
Lambda (λ)

tacamp

- λ = average number of events per time interval
 - Average number of adoptions per week = 8 0



Lambda is the distribution's peak



datacamp

lambda

- 1 5
- 8

Probability of a single value

If the average number of adoptions per week is 8, what is P(# adoptions in a week = 5)?

dpois(5, lambda = 8)

0.09160366

Probability of less than or equal to

If the average number of adoptions per week is 8, what is $P(\# \text{ adoptions in a week} \leq 5)$?

ppois(5, lambda = 8)

0.1912361

Probability of greater than

If the average number of adoptions per week is 8, what is P(# adoptions in a week > 5)?

ppois(5, lambda = 8, lower.tail = FALSE)

0.8087639

If the average number of adoptions per week is 10, what is P(# adoptions in a week > 5)?

ppois(5, lambda = 10, lower.tail = FALSE)

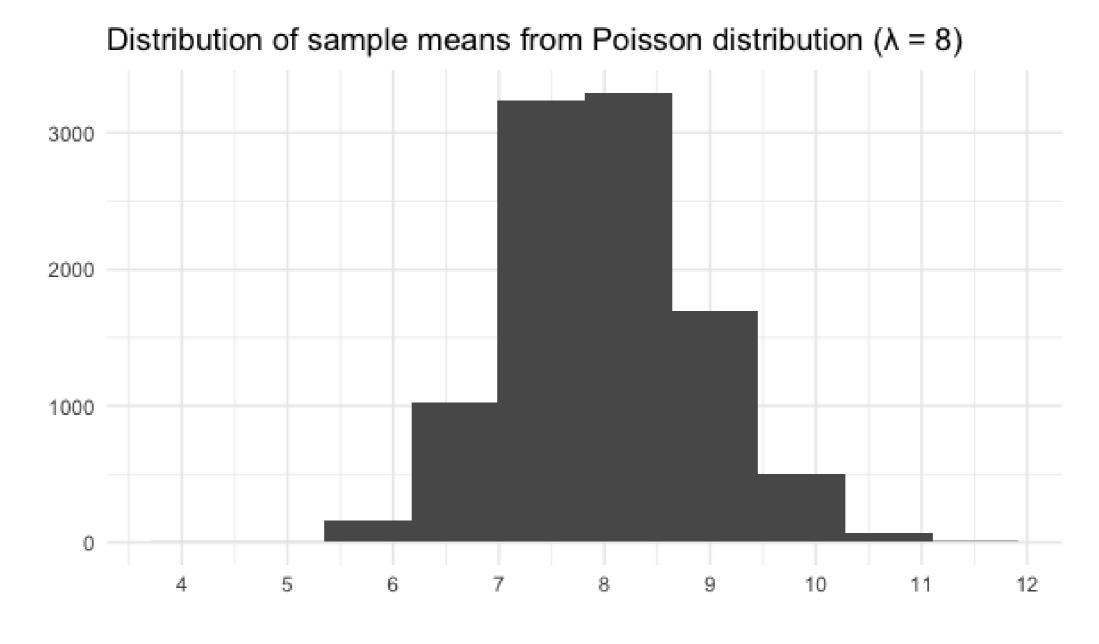
0.932914

Sampling from a Poisson distribution

rpois(10, lambda = 8)

13 6 11 7 10 8 7 3 7 6

The CLT still applies!



latacamp

Let's practice! INTRODUCTION TO STATISTICS IN R

More probability distributions

INTRODUCTION TO STATISTICS IN R

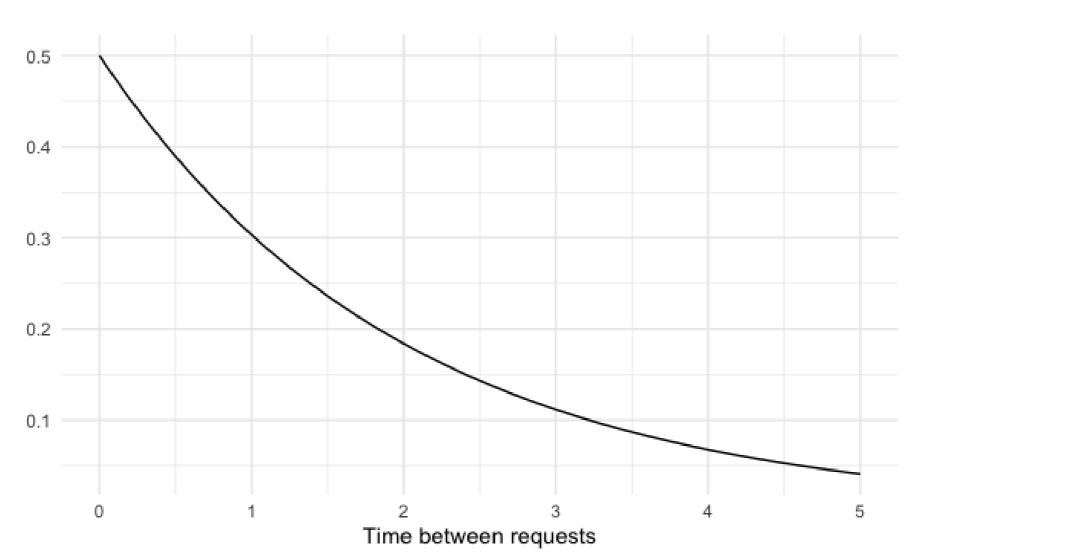
Maggie Matsui Content Developer, DataCamp

Exponential distribution

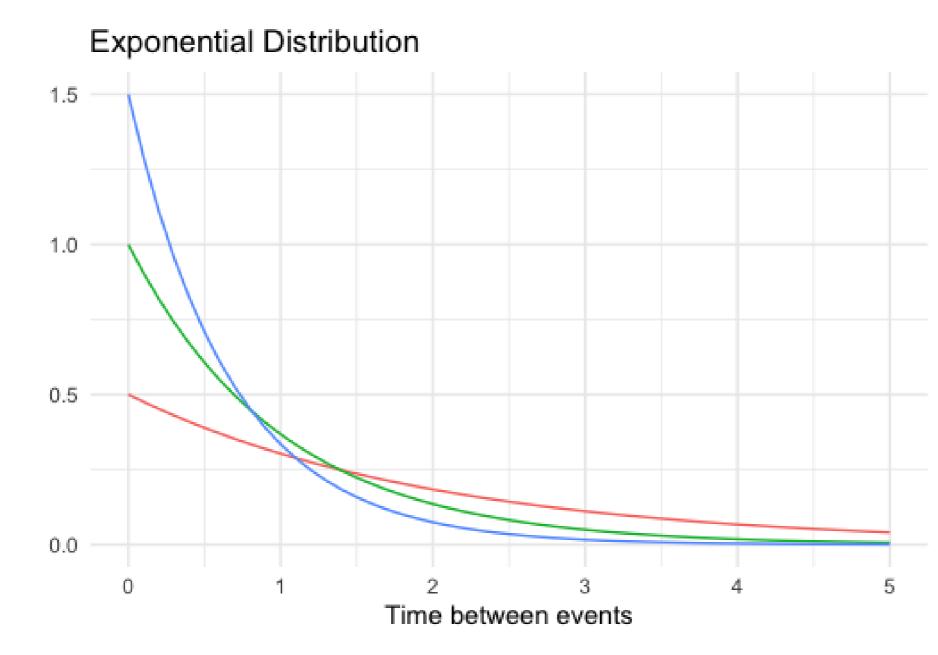
- Probability of time between Poisson events \bullet
- Examples
 - Probability of > 1 day between adoptions 0
 - Probability of < 10 minutes between restaurant arrivals 0
 - Probability of 6-8 months between earthquakes 0
- Also uses lambda (rate)
- Continuous (time)

Customer service requests

- On average, one customer service ticket is created every 2 minutes
 - λ = 0.5 customer service tickets created each minute



Lambda in exponential distribution



datacamp

rate - 0.5 1 - 1.5

 $P(1 \min < wait < 4 \min) =$

pexp(4, rate = 0.5) - pexp(1, rate = 0.5)

0.4711954

Expected value of exponential distribution

In terms of rate (Poisson):

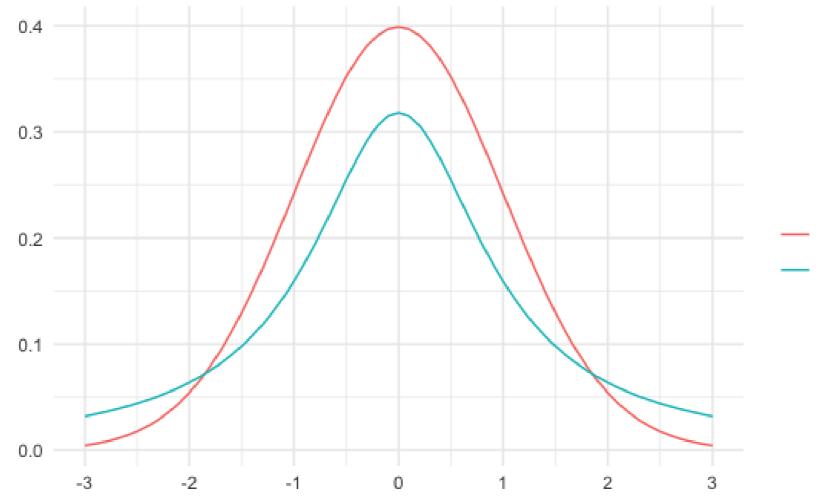
• $\lambda = 0.5$ requests per minute

In terms of time (exponential):

• $1/\lambda$ = 1 request per 2 minutes

(Student's) t-distribution

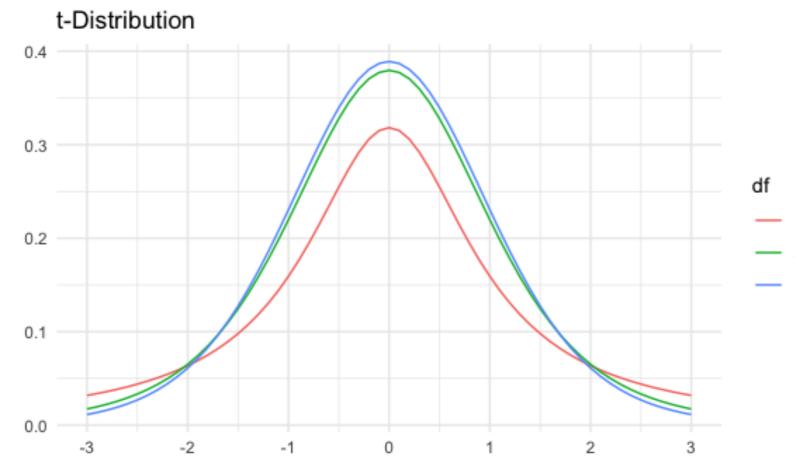
• Similar shape as the normal distribution



normal

Degrees of freedom

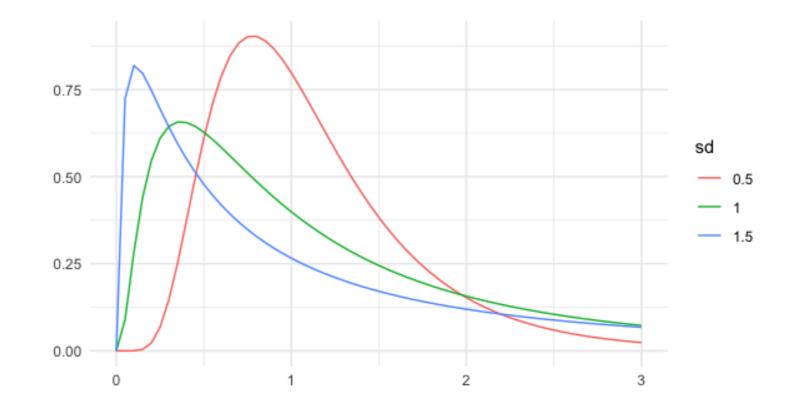
- Has parameter degrees of freedom (df) which affects the thickness of the tails
 - Lower df = thicker tails, higher standard deviation 0
 - Higher df = closer to normal distribution 0



10

Log-normal distribution

- Variable whose logarithm is normally distributed
- Examples:
 - Length of chess games
 - Adult blood pressure
 - Number of hospitalizations in the 2003
 SARS outbreak



Let's practice! INTRODUCTION TO STATISTICS IN R

