Latent Dirichlet allocation

INTRODUCTION TO TEXT ANALYSIS IN R

Marc Dotson Assistant Professor of Marketing

Unsupervised learning

Some more natural language processing (NLP) vocabulary:

- Latent Dirichlet allocation (LDA) is a standard topic model
- A collection of documents is known as a corpus
- Bag-of-words is treating every word in a document separately
- Topic models find patterns of words appearing together
- Searching for patterns rather than predicting is known as unsupervised learning

Word probabilities

P datacamp

Clustering vs. topic modeling

Clustering

- Clusters are uncovered based on distance, which is continuous.
- Every object is assigned to a single cluster.

Topic Modeling

- Topics are uncovered based on word frequency, which is discrete.
- Every document is a mixture (i.e., partial member) of every topic.

Let's practice! INTRODUCTION TO TEXT ANALYSIS IN R

Document term matrices

INTRODUCTION TO TEXT ANALYSIS IN R

Marc Dotson Assistant Professor of Marketing

Matrices and sparsity

sparse_review

Docs admit ago albeit amazing angle awesome
5 0 1 0 1 1 0
3 0 0 0 0 0 1
2 0 0 0 0 0 0

Using cast_dtm()

tidy_review %>%
 count(word, id) %>%
 cast_dtm(id, word, n)

< <documenttermmatrix< th=""><th>(documents: 1791, terms: 9669)>></th></documenttermmatrix<>	(documents: 1791, terms: 9669)>>
Non-/sparse entries:	62766/17252622
Sparsity :	100%
Maximal term length:	NA
Weighting :	term frequency (tf)

Using as.matrix()

dtm_review <- tidy_review %>%
 count(word, id) %>%
 cast_dtm(id, word, n) %>%
 as.matrix()
dtm_review[1:4, 2000:2004]

	Terms				
Docs	consecutive	consensus	consequences	considerable	considerabl
223	0	0	0	0	
615	0	0	0	0	
1069	0	0	0	0	
425	0	0	Θ	0	

R datacamp

Let's practice! INTRODUCTION TO TEXT ANALYSIS IN R

Running topic models

INTRODUCTION TO TEXT ANALYSIS IN R

Marc Dotson Assistant Professor of Marketing

Using LDA()

```
library(topicmodels)
lda_out <- LDA(
  dtm_review,
  k = 2,
  method = "Gibbs",
  control = list(seed = 42)
)
```


LDA() output

lda_out

A LDA_Gibbs topic model with 2 topics.

Using glimpse()

glimpse(lda_out)

Formal class 'LDA_Gibbs' [package "topicmodels"] with 16 slots

- ..@ seedwords : NULL
- ..@ Z
- ..@ alpha
- ..@ call
- ..@ Dim
- ..@ beta

- : int [1:75670] 1 2 2 1 1 2 1 1 2 2 ...
 - : num 25
 - : language LDA(x = dtm_review, k = 2, method = "Gibbs", ...
 - : int [1:2] 1791 9668
- ...@ control :Formal class 'LDA_Gibbscontrol' [package "topicmodels"] ...
 - : num [1:2, 1:17964] -8.81 -10.14 -9.09 -8.43 -12.53 ...

• • •

Using tidy()

lda_topics <- lda_out %>%
 tidy(matrix = "beta")
lda_topics %>%
 arrange(desc(beta))

#	Α	tibb	Le:	19,336	Х	3
	t	copic	ter	m	Ċ	peta
	<	<int></int>	<cł< td=""><td>ır></td><td><(</td><td>dbl></td></cł<>	ır>	<(dbl>
		_		-		

- 11 hair0.024122 clean0.0231
- 3 2 cleaning 0.0201
- # ... with 19,333 more rows

Let's practice! INTRODUCTION TO TEXT ANALYSIS IN R

Interpreting topics

Marc Dotson Assistant Professor of Marketing

Two topics

```
lda_topics <- LDA(</pre>
  dtm_review,
  k = 2,
  method = "Gibbs",
  control = list(seed = 42)
) %>%
  tidy(matrix = "beta")
word_probs <- lda_topics %>%
  group_by(topic) %>%
  top_n(15, beta) %>%
  ungroup() %>%
  mutate(term2 = fct_reorder(term, beta))
```

R datacamp

Two topics

acamp

```
ggplot(
  word_probs,
  aes(
    term2,
    beta,
    fill = as.factor(topic)
)
  +
  geom_col(show.legend = FALSE) +
  facet_wrap(~ topic, scales = "free") +
  coord_flip()
```


Three topics

```
lda_topics2 <- LDA(</pre>
  dtm_review,
  k = 3,
  method = "Gibbs",
  control = list(seed = 42)
) %>%
  tidy(matrix = "beta")
word_probs2 <- lda_topics2 %>%
  group_by(topic) %>%
  top_n(15, beta) %>%
  ungroup() %>%
  mutate(term2 = fct_reorder(term, beta))
```

R datacamp

Three topics

tacamp

```
ggplot(
  word_probs2,
  aes(
    term2,
    beta,
    fill = as.factor(topic)
)
  +
  geom_col(show.legend = FALSE) +
  facet_wrap(~ topic, scales = "free") +
  coord_flip()
```


Four topics

INTRODUCTION TO TEXT ANALYSIS IN R

R datacamp

The art of model selection

- Adding topics that are different is good
- If we start repeating topics, we've gone too far
- Name the topics based on the combination of high-probability words

Let's practice! INTRODUCTION TO TEXT ANALYSIS IN R

Wrap-up INTRODUCTION TO TEXT ANALYSIS IN R

Marc Dotson Assistant Professor of Marketing

Summary

- Tokenizing text and removing stop words
- Visualizing word counts
- Conducting sentiment analysis
- Running and interpreting topic models \bullet

Next steps

Other DataCamp courses:

- Sentiment Analysis in R: The Tidy Way
- Topic Modeling in R

Additional resource:

• Text Mining with R

All the best!

