Welcome to the course!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

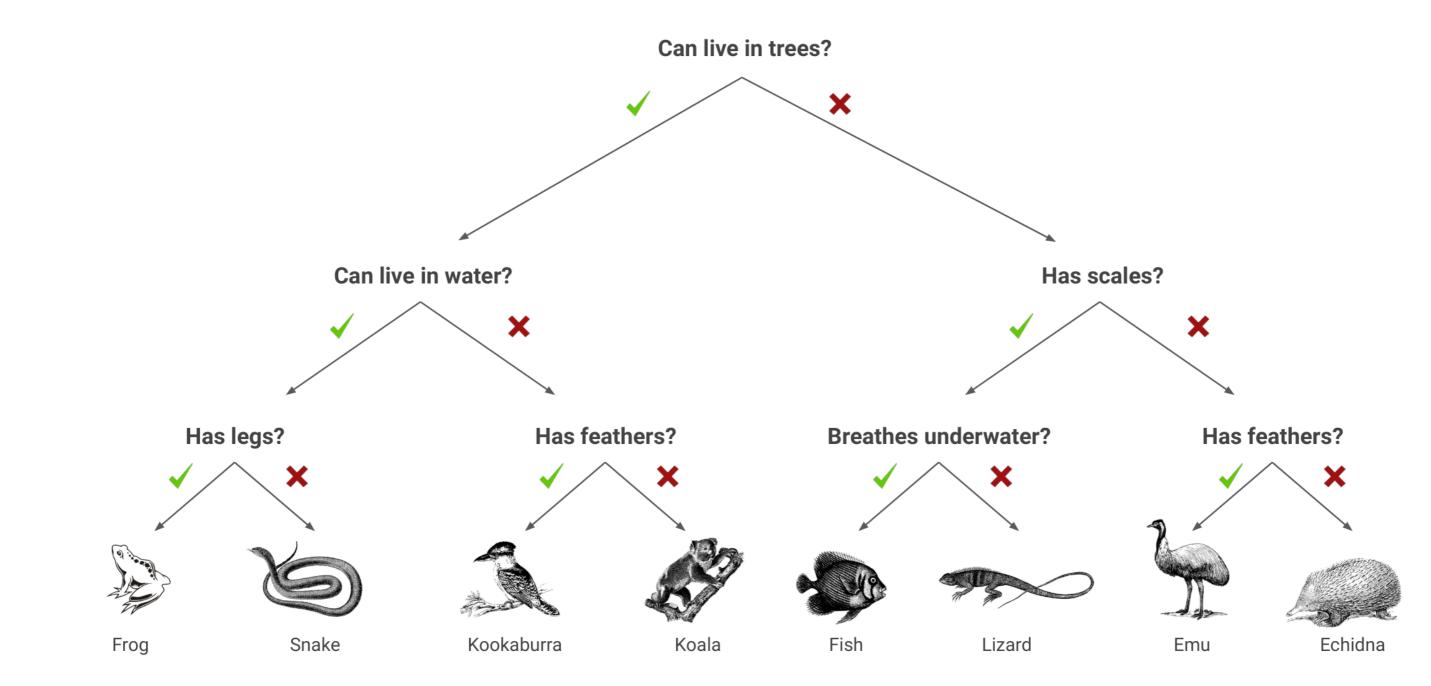
Sandro Raabe Data Scientist

Course overview

- **Chapter 1**: Classification trees
- **Chapter 2:** Regression trees, cross-validation, bias-variance tradeoff
- **Chapter 3:** Hyperparameter tuning, bagging, random forests
- **Chapter 4**: Boosted trees ${}^{\bullet}$

Decision trees are flowcharts

tacamp



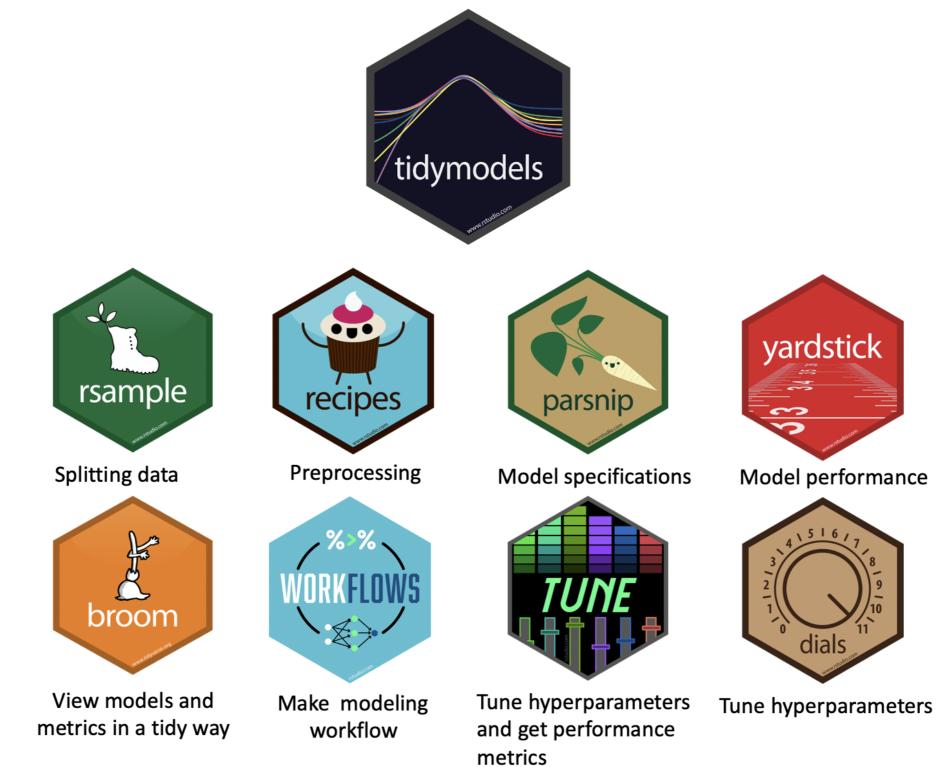
¹ https://aca.edu.au/resources/decision-trees-classifying-animals/decision-trees.pdf

Advantages of tree-based models

- Easy to explain and understand \bullet
- Possible to capture non-linear relationships
- Require no normalization or standardization of numeric features
- No need to create dummy indicator variables \bullet
- Robust to outliers
- Fast for large datasets

Disadvantages of tree-based models

- Hard to interpret if large, deep, or ensembled
- High variance, complex trees are prone to overfitting



datacamp

The tidymodels package

library(tidymodels)

Attachin	g packages			tidymodels
v parsnip	0.2.1	v rsample	0.1.1	
v dplyr	1.0.9	v tibble	3.1.7	
v yardstick	0.0.9	v tune	0.1.6	

MACHINE LEARNING WITH TREE-BASED MODELS IN R

s 0.1.4 --

Create a decision tree

Specification / functional design

1. Pick a model class

library(tidymodels)

decision_tree()

Decision Tree Model Specification (unknown)

Create a decision tree

2. Set the engine that powers your model

library(tidymodels)

decision_tree() %>% set_engine("rpart")

Decision Tree Model Specification (unknown)

Computational engine: rpart

Create a decision tree

3. Set the mode (classification or regression)

library(tidymodels)

decision_tree() %>% set_engine("rpart") %>% set_mode("classification")

Decision Tree Model Specification (classification)

Computational engine: rpart

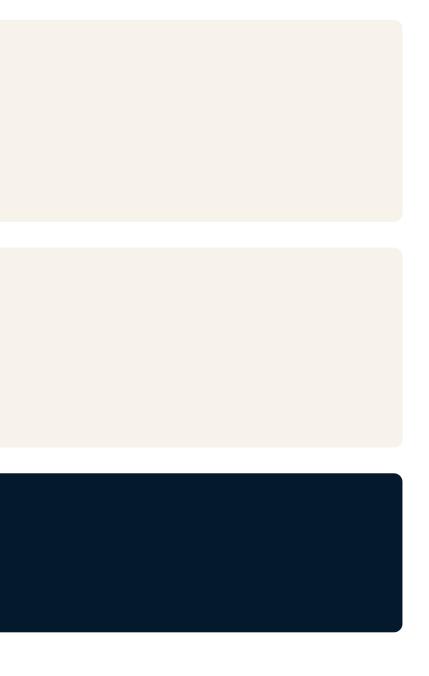
From a model specification to a real model

Specification is a skeleton and needs data to be trained with

```
library(tidymodels)
tree_spec <- decision_tree() %>%
               set_engine("rpart") %>%
               set_mode("classification")
```

```
# A model specification is fit using a formula to training data
tree_spec %>%
  fit(formula = outcome ~ age + bmi,
      data = diabetes)
```

```
parsnip model object
Fit time: 19 ms
n = 652
```

Let's build a model!

How to grow your tree

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Diabetes dataset

head(diabetes)

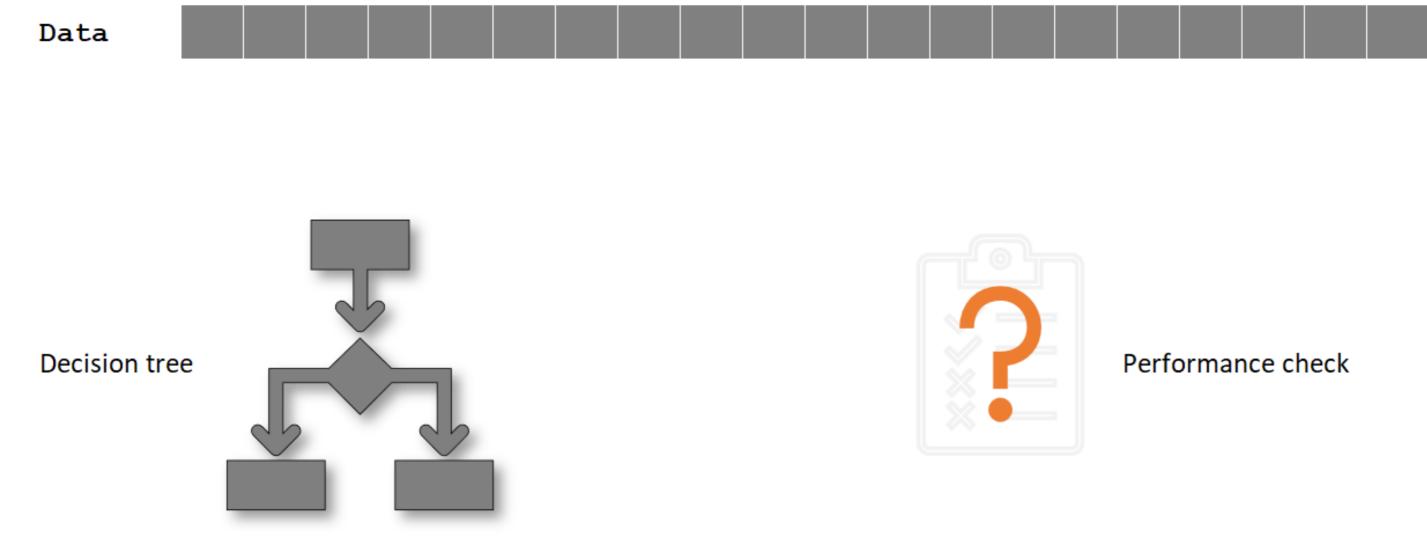
A tibble: 6 x 9

outcome pregnancies glucose blood_pressure skin_thickness ins <int> <int> <int> <int> <fct> 1 yes 6 148 72 35 2 no 1 85 66 29 3 yes 8 183 64 0

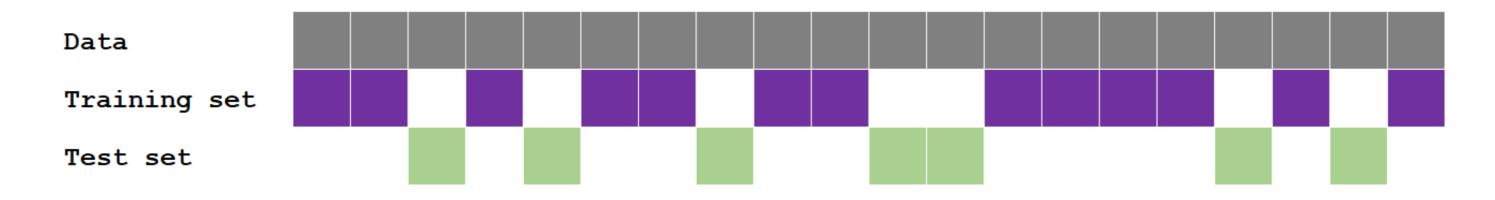
sulin	bmi	age
<int></int>	<dbl></dbl>	<int></int>
0	33.6	50
0	26.6	31
0	23.3	32

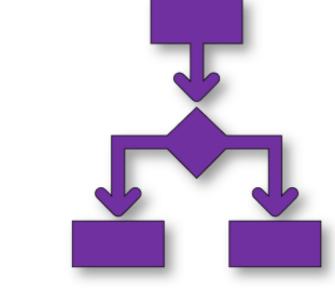
Using the whole dataset

• Used all your data for training - no data left to test the model



Data split





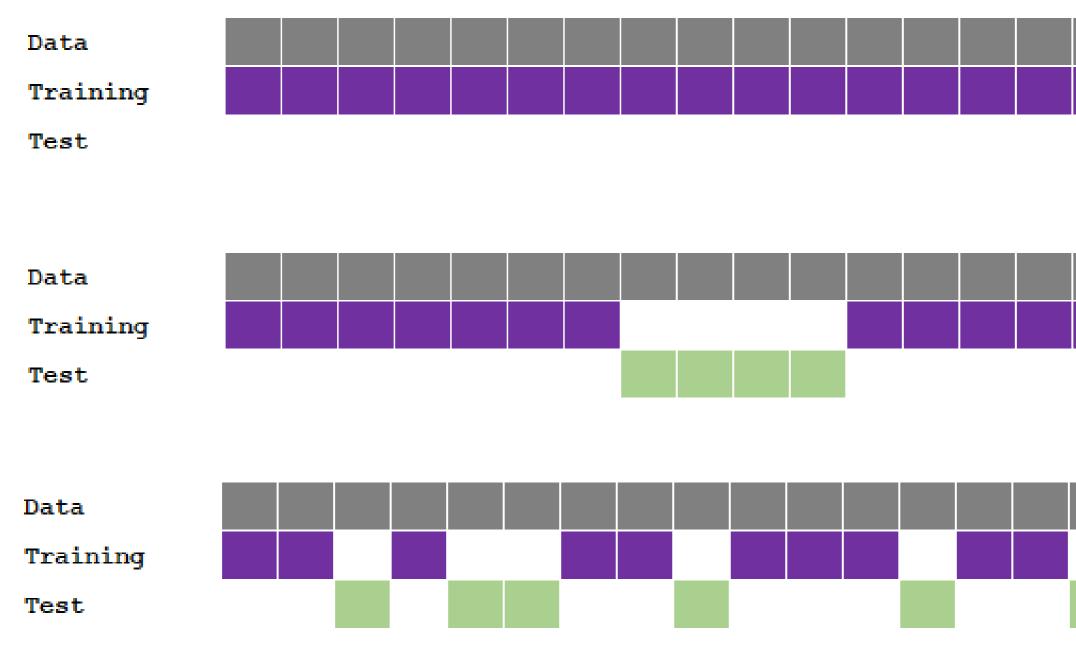
Decision tree

R datacamp

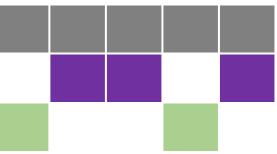
MACHINE LEARNING WITH TREE-BASED MODELS IN R

Performance check

Splitting methods



P datacamp



The initial_split() function

• Splits data randomly into single training and single test set

Split data proportionally (default: 0.75) diabetes_split <- initial_split(diabetes, prop = 0.9)</pre> diabetes_split

<Analysis/Assess/Total> <692/76/768>

¹ from the rsample package

Functions training() and testing()

• Extract training and test sets from a data split

diabetes_train <- training(diabetes_split)</pre> diabetes_test <- testing(diabetes_split)</pre>

Verification:

nrow(diabetes_train)/nrow(diabetes)

[1] 0.9007812

¹ from rsample

Avoid class imbalances

Training proportion of 'yes' outcome

prop_yes_train <- counts_train["yes"]/</pre>

Training count of 'yes' and 'no' outcomes counts_train <- table(diabetes_train\$outcome)</pre> counts_train

Test data count of 'yes' and 'no' outcomes counts_test <- table(diabetes_test\$outcome)</pre> counts test

no	yes	no	yes
490	86	28	48

sum(counts_train)

Test data proportion of 'yes' outcome prop_yes_test <- counts_test["yes"]/</pre>

prop_yes_test

0.63

0.15

prop_yes_train

MACHINE LEARNING WITH TREE-BASED MODELS IN R

sum(counts_test)

Solution - enforce similar distributions

```
initial_split(diabetes,
              prop = 0.9,
              strata = outcome)
```

• Ensures random split with similar distribution of outcome variable

Let's split! MACHINE LEARNING WITH TREE-BASED MODELS IN R

Predict and evaluate

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Predicting on new data

General call:

predict(model, new_data, type)

Arguments:

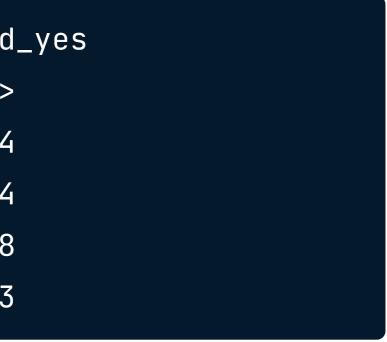
- 1. Trained model
- 2. Dataset to predict on
- 3. Prediction type: labels or probabilities

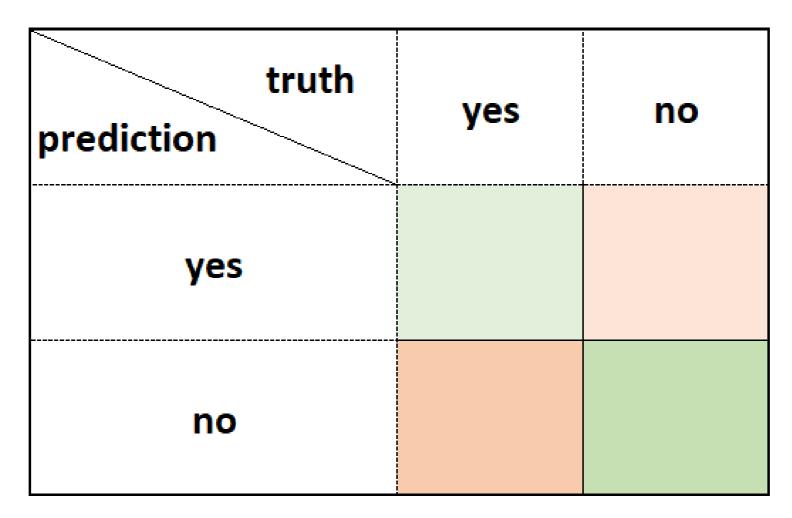
Predicting on new data

predict(model,	new_data = test_data, type = "class")	pred:	ict(model,	new_da type =
<pre>.pred_class <fct> 1 no 2 no 3 yes 4 no</fct></pre>		1 2 3 4	.pred_no <dbl> 0.866 0.956 0.672 0.877</dbl>	.pred. <dbl> 0.134 0.044 0.328 0.123</dbl>

MACHINE LEARNING WITH TREE-BASED MODELS IN R

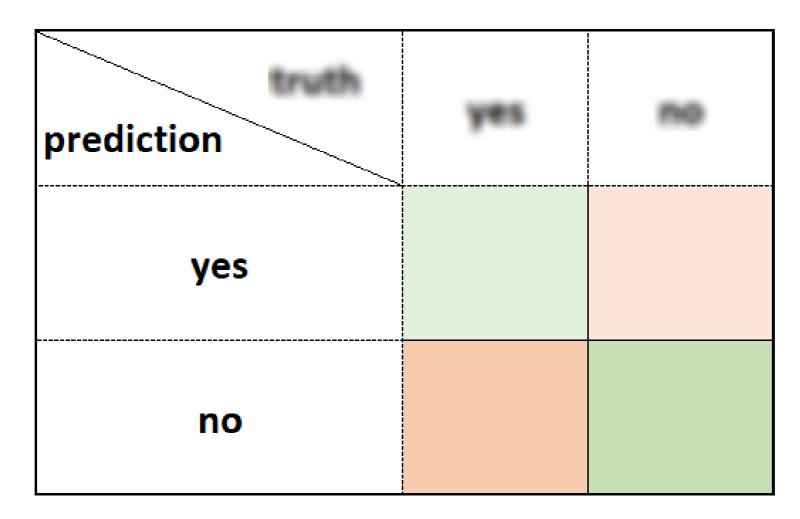
data = test_data, = "prob")





• Reveals how confused a model is

truth	yes	no
yes		
60		

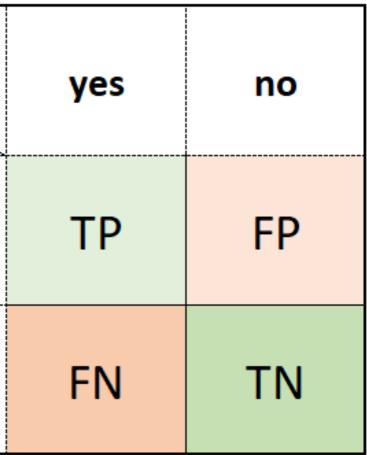


truth prediction	yes	no
yes	378	8
no	2	132

- Diagonal: correct predictions
- Off-diagonal: incorrect predictions

- **TP**: prediction is **yes**, truth is **yes**
- TN: prediction is **no**, truth is **no**
- FP: prediction is yes, truth is no
- FN: prediction is **no**, truth is **yes**

prediction	truth
yes	
no	



Create the confusion matrix

Combine predictions and truth values pred_combined <- predictions %>% mutate(true_class = test_data\$outcome) # Calculate the confusion matrix conf_mat(data = pred_combined, estimate = .pred_class, truth = true_class)

pred_combined

.pred_class	true_class
<fct></fct>	<fct></fct>
1 no	no
2 no	yes
3 no	no
4 yes	yes

	Truth	۱
Prediction	no	ye
no	116	3
yes	12	Z

MACHINE LEARNING WITH TREE-BASED MODELS IN R

40

Accuracy

 $\label{eq:accuracy} accuracy = \frac{n \ of \ correct \ predictions}{n \ of \ total \ predictions}$

- Function name: accuracy()
- Same arguments as conf_mat()
 - data, estimate and truth
 - Common structure in yardstick

accuracy(pred_combined, estimate = .pred_class, truth = true_class)

.metric	.estim
<chr></chr>	<0
1 accuracy	0.

MACHINE LEARNING WITH TREE-BASED MODELS IN R

mate dbl> .708

Let's evaluate!

