Continuous outcomes

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

The dataset

head(chocolate, 5)

final_grade	review_date	cocoa_percent	company_location	bean_type	broad_bean_origin
<dbl></dbl>	<int></int>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>
3	2009	0.8	U.K.	"Criollo, Trinitario"	"Madagascar"
3.75	2012	0.7	Guatemala	"Trinitario"	"Madagascar"
2.75	2009	0.75	Colombia	"Forastero (Nacional)"	"Colombia"
3.5	2014	0.74	Zealand		"Papua New Guinea"
3.75	2011	0.72	Australia		"Bolivia"

Construct the regression tree

spec <- decision_tree() %>% set_mode("regression") %>% set_engine("rpart")

print(spec)

Decision Tree Model Specification (regression)

Computational engine: rpart

model <- spec %>% fit(formula = final_grade ~ ., data = chocolate train)

print(model)

parsnip model object

Fit time: 20ms n= 1437

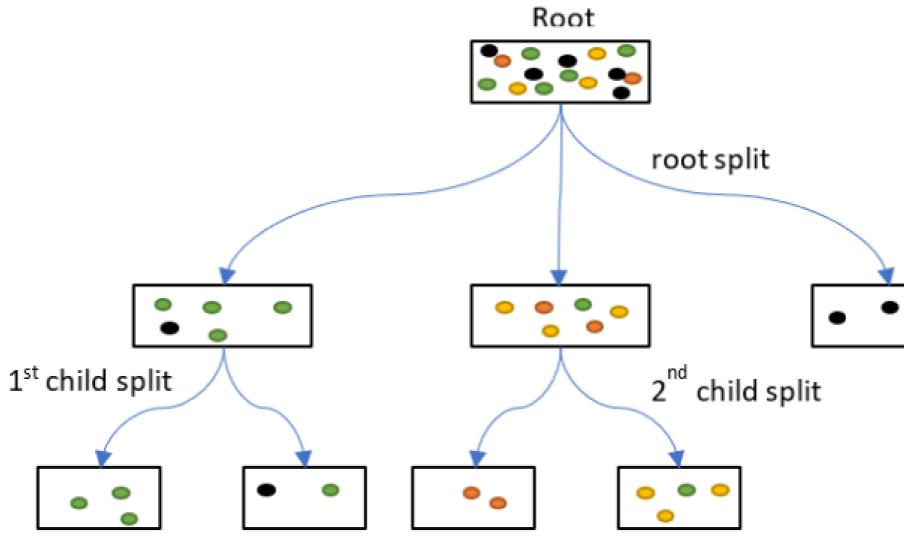
node), split, n, deviance, yval * denotes terminal node

Predictions using a regression tree

Model predictions on new data predict(model, new_data = chocolate_test)

.pred
<dbl></dbl>
3.281915
3.435234
3.281915
3.833931
3.281915
3.514151
3.273864
3.514151

Divide & conquer



datacamp

Hyperparameters

Goal for regression trees:

• Low variance or deviation from the mean within groups

Design decisions:

- min_n : number of data points in a node needed for further split (default: 20)
- tree_depth : maximum depth of a tree (default: 30)
- cost_complexity : penalty for complexity (default: 0.01)

Set them in very first step:

decision_tree(tree_depth = 4, cost_complexity = 0.05) %>% set_mode("regression")

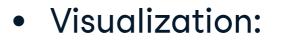
Understanding model output

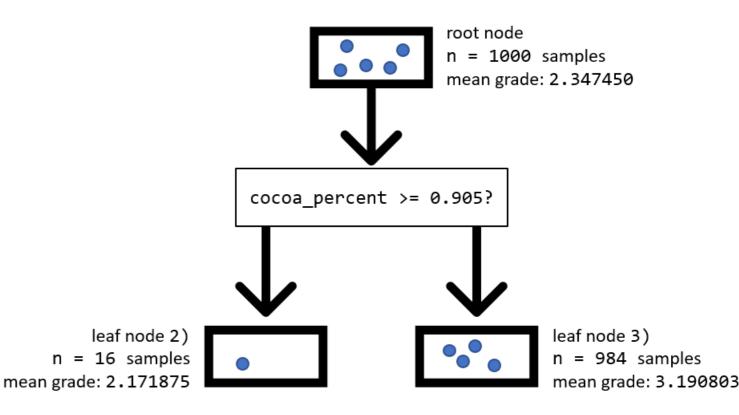
decision_tree(tree_depth = 1) %>%
 set_mode("regression") %>%
 set_engine("rpart") %>%
 fit(formula = final_grade ~ .,
 data = chocolate_train)

parsnip model object
Fit time: 1ms
n= 1000
node), split, n, yval
1) root 1000 2.347450

2) cocoa_percent>=0.905 16 2.171875 *
3) cocoa_percent<0.905 984 3.190803 *</pre>

• Model with tree_depth = 1





MACHINE LEARNING WITH TREE-BASED MODELS IN R

R datacamp

Let's do regression!

Performance metrics for regression trees

MACHINE LEARNING WITH TREE-BASED MODELS IN R

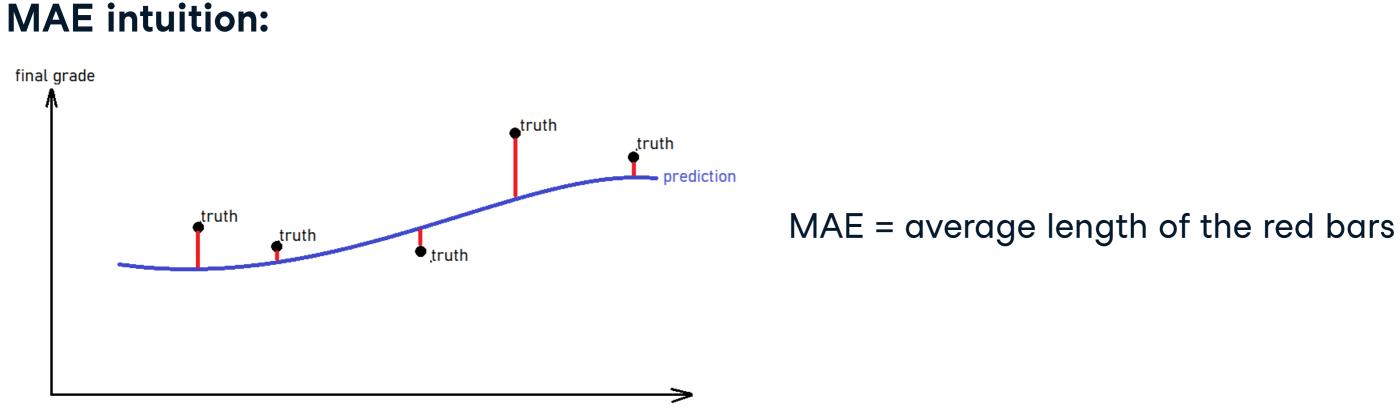
Sandro Raabe Data Scientist

How to measure performance?

- Classification problems: accuracy (confusion matrix) \bullet
- Regression problems: "correct" is relative, no binary correctness
- \Rightarrow Measure how far predictions are away from truth

Common metrics for regression

- Mean Absolute Error (MAE)
- Root Mean Square Error (RMSE) \bullet



Formulas and intuition

$$MAE = rac{1}{n}\sum_{i=1}^n |actual_i - predicted_i|$$

number of predictions"

$$MSE = -rac{1}{n}\sum_{i=1}^n (actual_i - predicted_i)^2$$
 $ullet$ "Mean s

MACHINE LEARNING WITH TREE-BASED MODELS IN R

• "Sum of absolute deviations divided by the

squared error"

Formulas and intuition

$$MAE = rac{1}{n}\sum_{i=1}^n |actual_i - predicted_i|$$

• "Sum of absolute deviations divided by the number of predictions"

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^{n}{(actual-predicted)^2}}$$

- "Root of the mean squared error"
- Large errors get higher weight

acamp

Coding: predictions

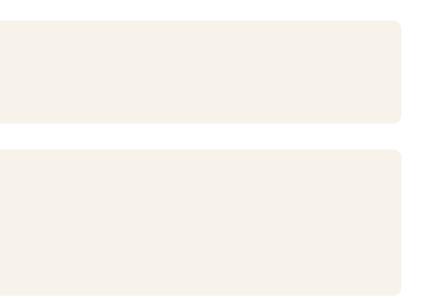
parsnip and yardstick are included in tidymodels
library(tidymodels)

```
# Make predictions and add to test data
predictions <- predict(model, new_data = chocolate_test) %>%
bind_cols(chocolate_test)
```

# /	A tibbl	_e: 358 x 7				
	.pred	final_grade	review_date	cocoa_percent	company_location	
	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<fct></fct>	
1	2.5	2.75	2013	0.7	France	
2	3.64	3.25	2014	0.8	France	
3	3.3	3.5	2012	0.7	France	
4	3.25	3.5	2011	0.72	Fiji	
#	wit	th 354 more i	rows, and 2 r	nore variables:	: bean_type <fct>,</fct>	broad_bean_origin <f< th=""></f<>

R datacamp

MACHINE LEARNING WITH TREE-BASED MODELS IN R



fct>

Coding: mae() and rmse()

<pre># Evaluate using mae()</pre>	<pre># Evaluate using rms</pre>
mae(predictions,	<pre>rmse(predictions,</pre>
estimate = .pred,	estimate = .pre
truth = final_grade)	truth = final_g
# A tibble: 1 x 2	# A tibble: 1 x 2
.metric .estimate	.metric .estimat
<chr> <dbl></dbl></chr>	<chr> <dbl< th=""></dbl<></chr>
1 mae 0.363	1 rmse 0.45

MACHINE LEARNING WITH TREE-BASED MODELS IN R

se()

ed, grade)

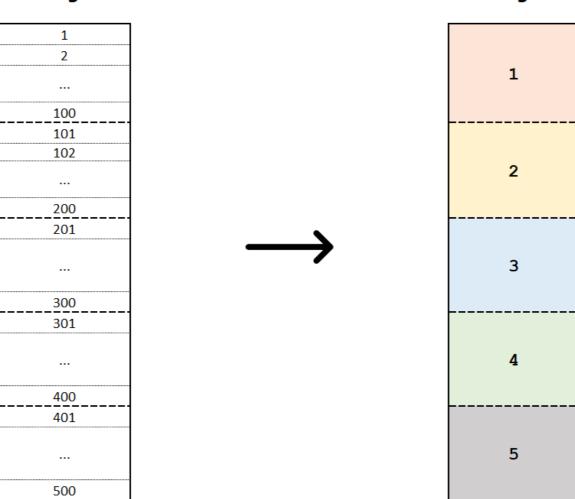
e > 57

Let's evaluate!

Cross-validation

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist



Training data

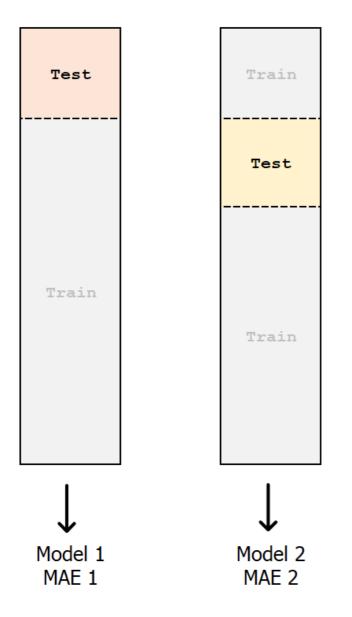
Training data

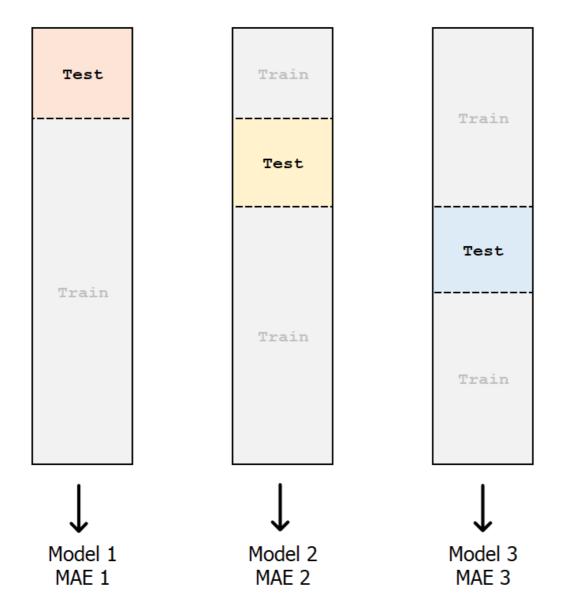
Test data

501	
•••	
600	

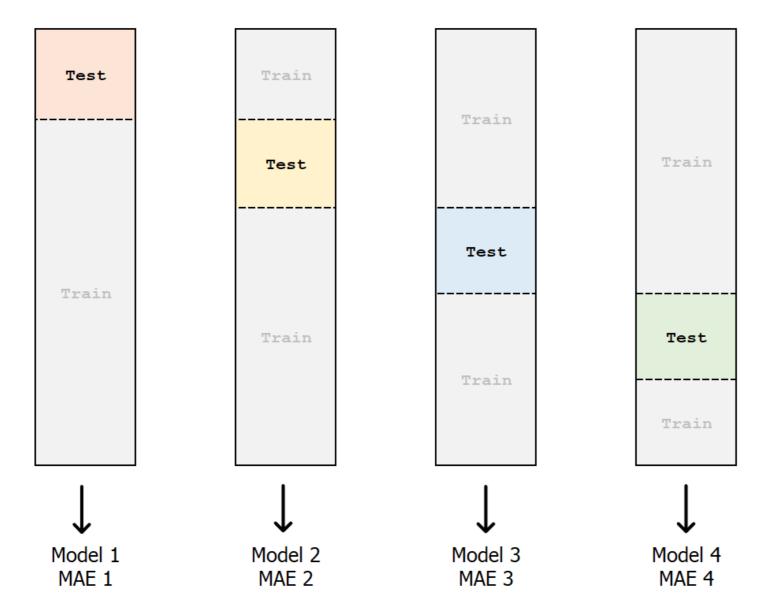
& datacamp

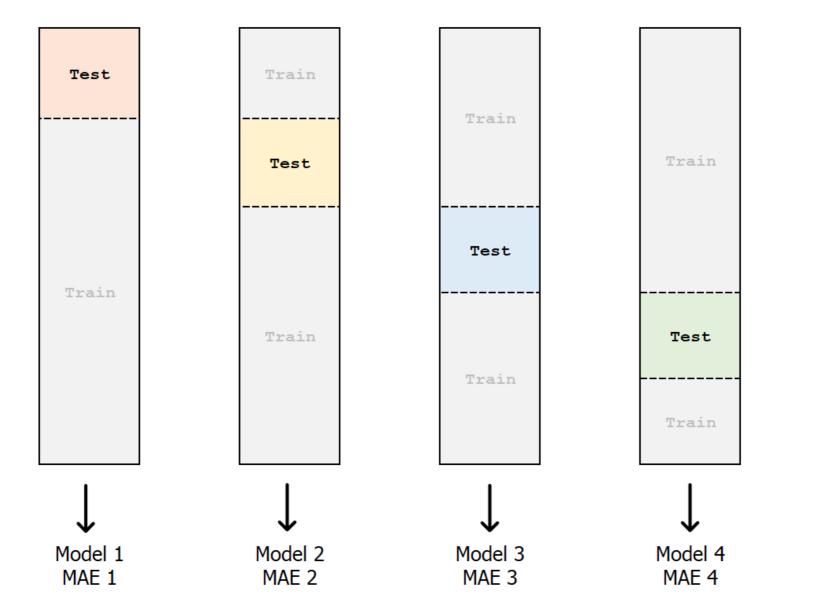
R datacamp





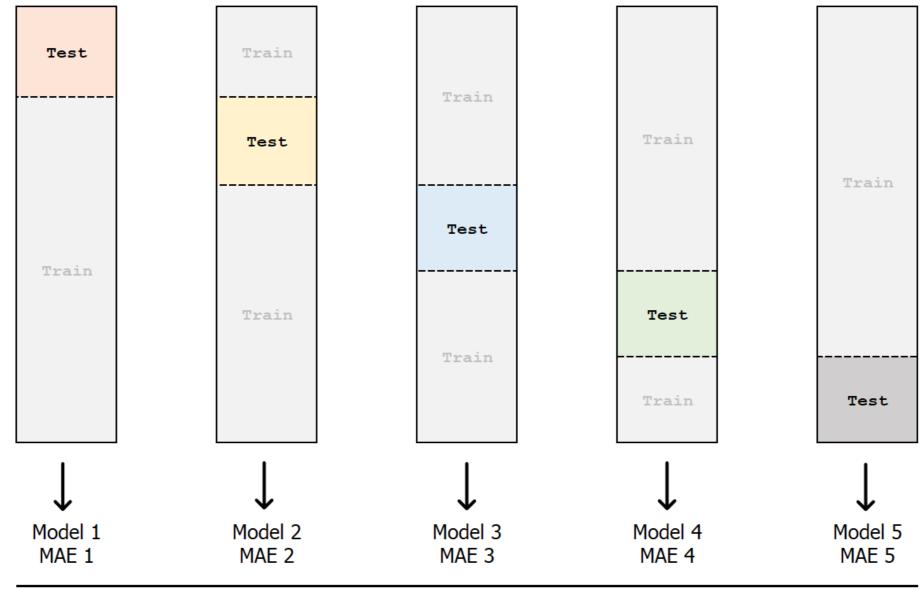
latacamp





datacamp

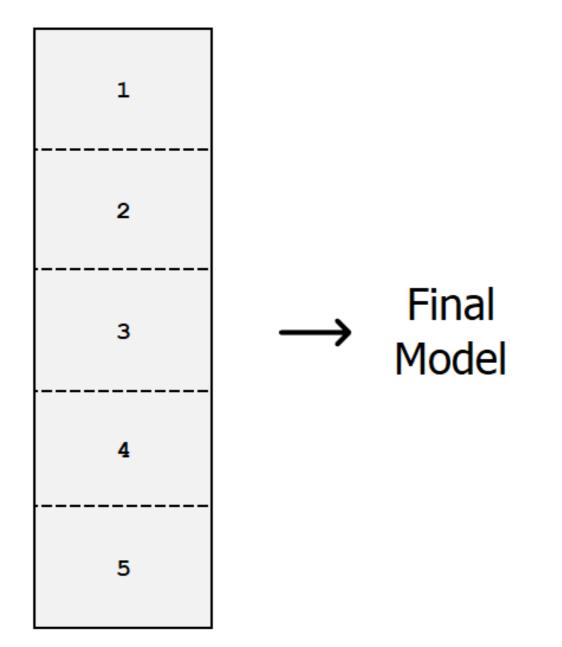
Model 5 MAE 5



Cross-validated out-of-sample MAE

Fit final model on the full dataset

Training data



latacamp

Coding - Split the data 10 times

Random seed for reproducibility
set.seed(100)

Create 10 folds of the dataset
chocolate_folds <- vfold_cv(chocolate_train, v = 10)</pre>

```
# 10-fold cross-validation
```

```
# A tibble: 10 x 2
```

splits id

- 1 <split [1293/144]> Fold1
- 2 <split [1293/144]> Fold2

```
3 <split [1293/144]> Fold3
```

```
4 ...
```

R datacamp

Coding - Fit the folds

Fit a model for every fold and calculate MAE and RMSE
fits_cv <- fit_resamples(tree_spec,</pre>

```
final_grade ~ .,
resamples = chocolate_folds,
metrics = metric_set(mae, rmse))
```

Resampling results

10-fold cross-validation

```
# A tibble: 10 x 4
```

splits id .metrics

- <list> <chr> <list>
- 1 <split [1293/144]> Fold1 <tibble [2 x 4]>
- 2 <split [1293/144]> Fold2 <tibble [2 x 4]>

3 <split [1293/144]> Fold3 <tibble [2 x 4]>

4 ...

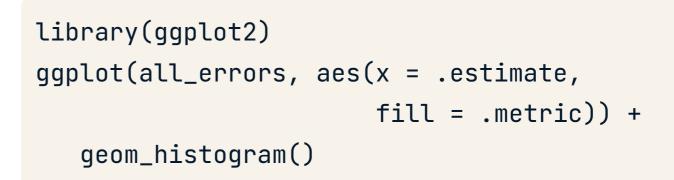
& datacamp

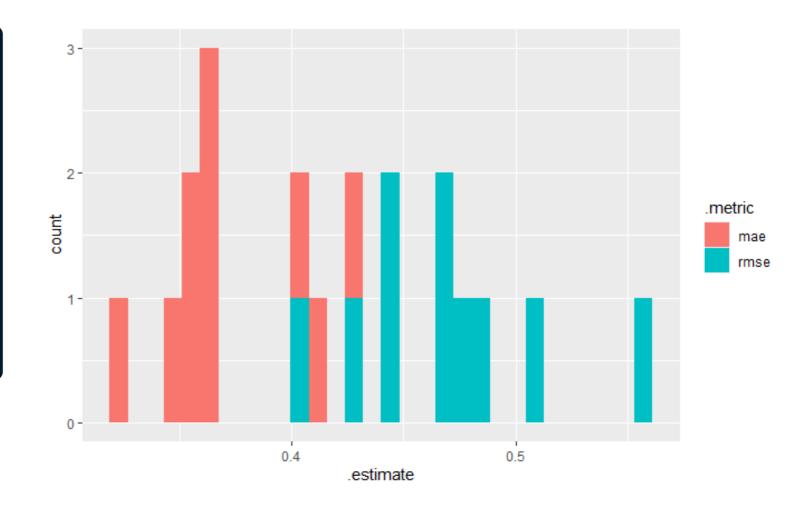


Coding - Collect all errors

print(all_errors)

# A t	ibble	: 20 x 3	
id		.metric	.estimate
<c< th=""><td>hr></td><td><chr></chr></td><td><dbl></dbl></td></c<>	hr>	<chr></chr>	<dbl></dbl>
1 Fo	ld01	mae	0.362
2 Fo	ld01	rmse	0.442
3 Fo	ld02	mae	0.385
4 Fo	ld02	rmse	0.504
5	•		

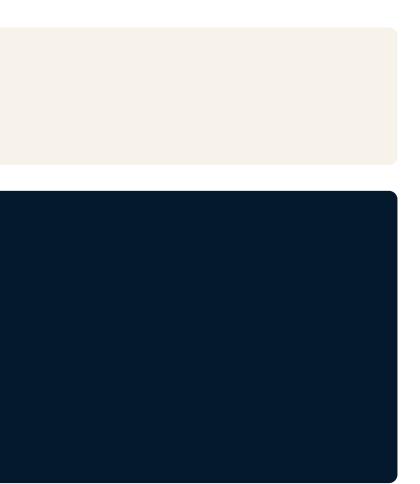




Coding - Summarize training sessions

Collect and summarize errors of all model runs collect_metrics(fits_cv)

# A	tibble:	2 X 3	
•	metric	mean	n
<	chr>	<dbl></dbl>	<int></int>
1 m	lae	0.383	10
2 r	mse	0.477	10



Let's cross-validate!

Bias-variance tradeoff

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Hyperparameters

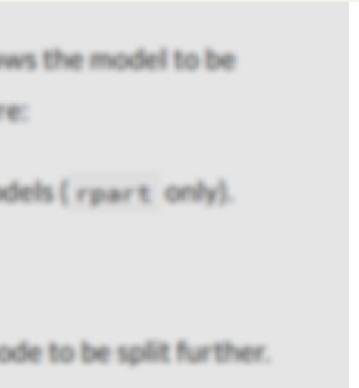
- Chosen by modeler
- e.g. tree_depth
- Check documentation!

?decision_tree

decision_tree() is a way to generate a specification of a model before fitting and allows the model to be created using different packages in R or via Spark. The main arguments for the model are:

- cost_complexity: The cost/complex
- tree_depth : The maximum depth of a second secon
- min_n: The minimum number of data points in a node that are required for the node to be split further.

R datacamp



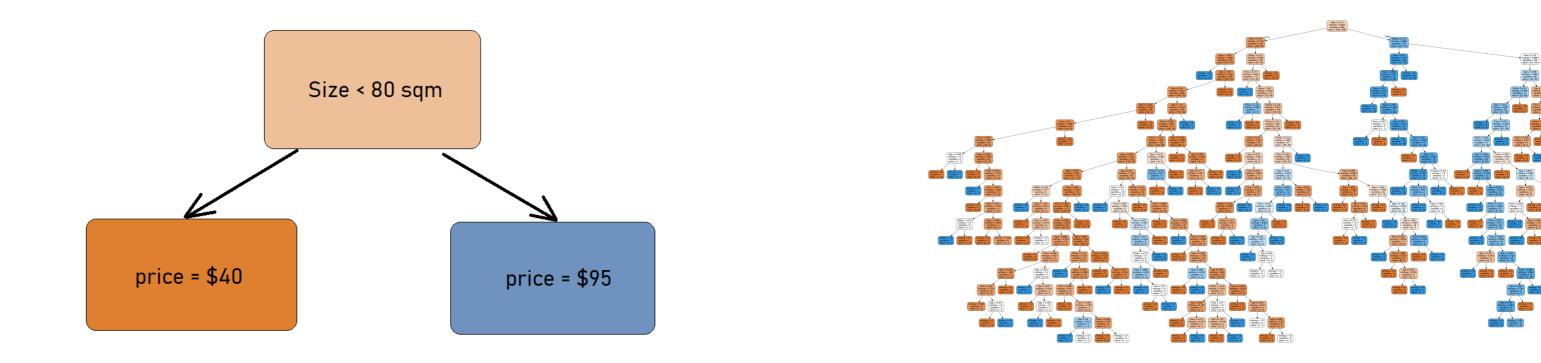
Simple model

Complex model

```
simple_spec <- decision_tree(tree_depth = 2) %>%
   set_mode("regression")
```

```
simple_spec %>% fit(final_grade ~ .,
                    data = training_data)
```

set_mode("regression")



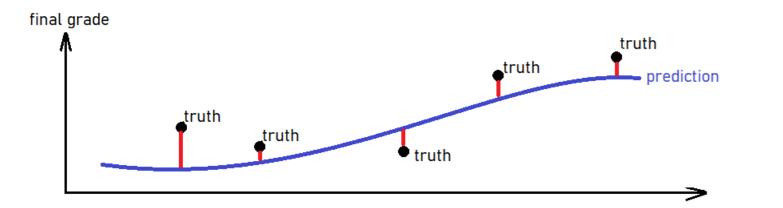
MACHINE LEARNING WITH TREE-BASED MODELS IN R

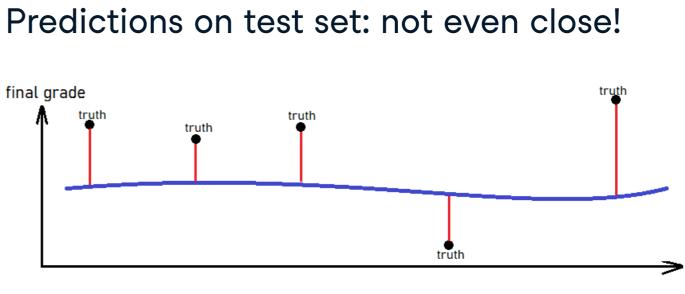
complex_spec <- decision_tree(tree_depth = 15) %</pre>

complex_spec %>% fit(final_grade ~ ., data = training_data)

Complex model - overfitting - high variance

Predictions on training set: well done!





mae(train_results, estimate = .pred, truth = final_grade)

#	А	tibble:	1	Х	3
	. n	netric	.es	st	imate
1	ma	ae		(9.204

mae(test_results, estimate = .pred, truth = final_grade)

#	A	tibble	•	1	Χ	3	
	. n	netric	•	es	sti	imat	e
1	ma	ae			(9.94	í7

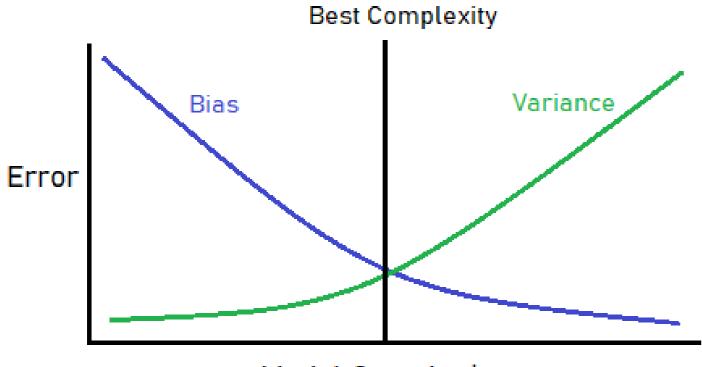
Simple model - underfitting - high bias

Large errors on training and test set:

bind_rows(training = mae(train_results, estimate = .pred, truth = final_grade), test = mae(test_results, estimate = .pred, truth = final_grade), .id = "dataset")

#	A tibble:	2 x 4	
	dataset	.metric	.estimate
	<chr></chr>	<chr></chr>	<dbl></dbl>
1	training	mae	0.754
2	test	mae	0.844

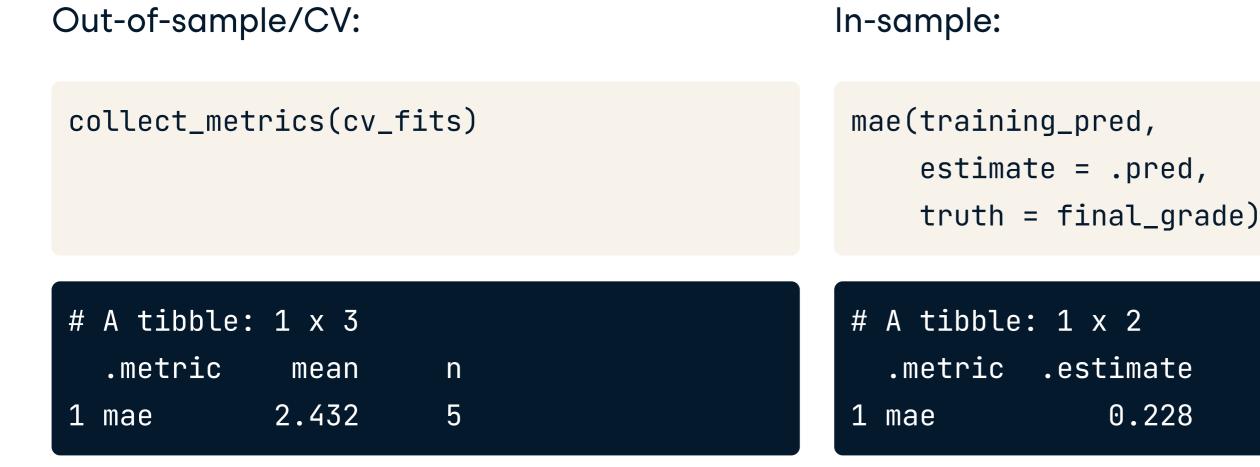
The bias-variance tradeoff



Model Complexity

- Simple models -> high bias
- Complex models -> high variance
- Tradeoff between bias and variance
- Build models around the *sweet spot* \bullet

Detecting overfitting



- High CV error
- Overfit / high variance
- Reduce complexity!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

• Small training error

Detecting underfitting

In-sample:

mae(training_pred, estimate = .pred, truth = final_grade)

#	A tibbl	.e: 1 x 2
	.metric	.estimate
	<chr></chr>	<dbl></dbl>
1	mae	2.432

- Large in-sample/training error \bullet
- Underfit / high bias
- Increase complexity!

Let's trade off!

