Tuning hyperparameters MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Hyperparameters

- Influence shape and complexity of trees
- Model parameters whose values control model complexity and are set prior to model training

Hyperparameters in parsnip decision trees:

- min_n : Minimum number of samples required to split a node
- tree_depth : maximum allowed depth of the tree
- cost_complexity : penalty for tree complexity

Why tuning?

Default values set by parsnip:

decision_tree(min_n = 20, tree_depth = 30, cost_complexity = 0.01)

• Work well in many cases, but may not be the best values for all datasets

Goal of hyperparameter tuning is finding the optimal set of hyperparameter values.

Tuning with tidymodels using the tune package

datacamp

Tuning with tidymodels

Pc datacamp

Tuning with tidymodels

MACHINE LEARNING WITH TREE-BASED MODELS IN R

U datacamp

Tuning with tidymodels

U datacamp

Step 1: Create placeholders: tune()

```
spec_untuned <- decision_tree(
    min_n = tune(),
    tree_depth = tune()
    %>%
    set_engine("rpart") %>%
    set_mode("classification")
```

```
Decision Tree Model Specification (classification)
```

```
Main Arguments:
   tree_depth = tune()
   min_n = tune()
```

- tune() labels parameters for tuning
- Rest of the specification as usual

meters for tuning tion as usual

Step 2: Create a tuning grid: grid_regular()

```
tree_grid <- grid_regular(</pre>
         parameters(spec_untuned),
        levels = 3
    )
```

- Helper function parameters() \bullet
- levels : number of grid points for each hyperparameter

Step 3: Tune the grid: tune_grid()

- Builds a model for every grid point \bullet
- Evaluates every model out-of-sample (CV)

Usage and arguments:

- Untuned tree spec
- Model formula
- CV folds
- Tuning grid
- List of metrics wrapped in metric_set()

```
tune_results <- tune_grid(</pre>
  spec_untuned,
  outcome ~ .,
  resamples = my_folds,
  grid = tree_grid,
  metrics = metric_set(accuracy))
```

Visualize the tuning results

autoplot(tune_results)

datacamp

Step 4: Use the best parameters: finalize_model()

<pre># Select the best performing parameters final_params <- select_best(tune_results)</pre>	<pre># Plug them into the s best_spec <- finalize_</pre>
final_params	best_spec
<pre># A tibble: 1 x 3 min_n tree_depth .config <int> <int> <chr> 1 2 8 Model4</chr></int></int></pre>	<pre>Decision Tree Model Sp (class Main Arguments: tree_depth = 8 min_n = 2 Computational engine:</pre>

latacamp

MACHINE LEARNING WITH TREE-BASED MODELS IN R

pecification _model(spec_untuned, final_params)

ecification sification)

rpart

Let's tune!

More model measures

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Limits of accuracy

- "Naive" model **always** predicting no can have 98% accuracy
- \rightarrow Possible in imbalanced dataset with 98% of negative samples

Sensitivity or true positive rate

• Proportion of all positive outcomes that were correctly classified

truth prediction	yes	no
yes	TP	FP
no	FN	ΤN

Specificity or true negative rate

• Proportion of all negative outcomes that were correctly classified

TN TN + FP spec =

	class predictions using different thresholds		
.pred_yes	threshold_0.3	threshold_0.5	threshold_0.75
0.8	yes	yes	yes
0.5	yes	yes	no
0.7	yes	yes	no
0.6	yes	yes	no
0.3	yes	no	no
0.5	yes	yes	no
0.3	yes	no	no
	·	•	

R datacamp

ROC (Receiver-operating-characteristic) curve

• Visualizes the performance of a classification model across all possible thresholds

ROC curve and AUC

datacamp

Area under the ROC curve

- AUC = 0.5
- Performance not better than random chance

- AUC = 1
- All examples correctly classified for every threshold \rightarrow perfect model

- AUC = 0
- Every example incorrectly classified

yardstick sensitivity: sens()

predictions

# A	tibble:	153 x 2
.pred_class		true_class
	<fct></fct>	<fct></fct>
1	yes	no
2	no	no
3	no	yes
4	yes	yes

Calculate single-threshold sensitivity sens(predictions, estimate = .pred_class, truth = true_class)

#	A tibble: 1	. X	2
	.metric		.es
	<chr></chr>		
1	sensitivity	7	

• Similar arguments as accuracy() and conf_mat()

MACHINE LEARNING WITH TREE-BASED MODELS IN R

timate <dbl> 0.872

yardstick ROC: roc_curve()

Calculate the ROC curve for all thresholds roc <- roc_curve(predictions,</pre>

Plot the ROC curve autoplot(roc)

# A	tibble: 9	9,116 x 13			
•	pred_yes	still_custo	mer age <u>o</u>	gender	• • •
	<dbl></dbl>	<fct></fct>	<int></int>	<fct></fct>	•••
1	0.0557	no	45	М	•••
2	0.0625	no	49	F	•••
3	0.330	no	51	М	•••
4	•••				
•••	,				

- estimate = .pred_yes,
- truth = still_customer)

yardstick AUC: roc_auc()

• Same arguments: data, prediction column, truth column

Let's measure!

Bagged trees MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Many heads are better than one

R datacamp

Bootstrap & aggregation

Bagging = short for **B**ootstrap **Agg**regation

- 1. Bootstrapping
- Sampling with replacement \rightarrow many modified training sets

- 2. Aggregation
- Predictions of different models are aggregated for final prediction:
 - Average (in regression) 0
 - Majority vote (in classification) 0

Step 1: Bootstrap and train

atacamp

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Build K models on K samples (Parallel)

Model 1 Model 2 Model 3

datacamp

Coding: Specify the bagged trees

```
library(baguette)
spec_bagged <- bag_tree() %>%
    set_mode("classification") %>%
    set_engine("rpart", times = 100)
```

Bagged Decision Tree Model Specification (classification)

```
Main Arguments:
  cost_complexity = 0
  min_n = 2
```

```
Engine-Specific Arguments:
  times = 100
```

Computational angina prant

Train all trees

model_bagged <- fit(spec_bagged, formula = still_customer ~ ., data = customers_train)</pre>

parsnip model object

Fit time: 23.9s Bagged CART (classification with 100 members) Variable importance scores include:

```
# A tibble: 19 x 4
                       value std.error used
  term
                       <dbl> <dbl> <int>
  <chr>
1 total_trans_ct
                       876. 3.93 100
2 total_trans_amt
                       800. 4.54 100
                       491. 3.67 100
3 total_revolving_bal
```


Let's bootstrap!

Random forest

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro Raabe Data Scientist

Random forest

- Suited for high-dimensional data
- Easy to use
- Out-of-the-box performance
- Implemented in a variety of packages: ranger , randomForest
- tidymodels interface to these packages: rand_forest() (contained in parsnip package)

Idea

- Basic idea (identical to bagging): train trees on bootstrap samples ullet
- Key difference: **random** predictors across trees ightarrow **random** forest

Intuition

tacamp

Coding: Specify a random forest model

• Function name: rand_forest()

Hyperparameters:

mtry : predictors seen at each node, default:

num predictors

- trees : number of trees in the forest
- min_n : smallest node size allowed

rand_forest(mtry = 4, trees = 500, min_n = 10) %>% # Set the mode set_mode("classification") %>% set_engine("ranger")

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Use engine ranger or randomForest

Coding: Specify a random forest model

spec <- rand_forest(trees = 100) %>% set_mode("classification") %>% set_engine("ranger")

Random Forest Model Specification (classification)

Main Arguments: trees = 100Computational engine: ranger

Training a forest

spec %>% fit(still_customer ~ ., data = customers_train)

parsnip model object

Fit time: 631ms Ranger result

Number of trees: 100 Sample size: 9116 Number of independent variables: 19 Mtry: 4 Target node size: 10

Variable importance

```
rand_forest(mode = "classification") %>%
    set_engine("ranger", importance = "impurity") %>%
    fit(still_customer ~ ., data = customers_train) %>%
    vip::vip()
```


MACHINE LEARNING WITH TREE-BASED MODELS IN R

R datacamp

400

Let's plant a random forest!

