Logistic regression on sonar

MACHINE LEARNING WITH CARET IN R

Max Kuhn

Software Engineer at RStudio and creator of caret

R datacamp

Classification models

- Categorical (i.e. qualitative) target variable
- Example: will a loan default?
- Still a form of supervised learning
- Use a train/test split to evaluate performance
- Use the Sonar dataset \bullet
- Goal: distinguish rocks from mines \bullet

Example: Sonar data

```
# Load the Sonar dataset
library(mlbench)
data(Sonar)
```

Look at the data
Sonar[1:6, c(1:5, 61)]

	V1	V2	V3	V4	V5	Class
1	0.0200	0.0371	0.0428	0.0207	0.0954	R
2	0.0453	0.0523	0.0843	0.0689	0.1183	R
3	0.0262	0.0582	0.1099	0.1083	0.0974	R
4	0.0100	0.0171	0.0623	0.0205	0.0205	R
5	0.0762	0.0666	0.0481	0.0394	0.0590	R
6	0.0286	0.0453	0.0277	0.0174	0.0384	R

R datacamp

Splitting the data

- Randomly split data into training and test sets ullet
- Use a 60/40 split, instead of 80/20 •
- Sonar dataset is small, so 60/40 gives a larger, more reliable test set

Splitting the data

```
# Randomly order the dataset
rows <- sample(nrow(Sonar))
Sonar <- Sonar[rows, ]</pre>
```

```
# Find row to split on
split <- round(nrow(Sonar) * 0.60)
train <- Sonar[1:split, ]
test <- Sonar[(split + 1):nrow(Sonar), ]</pre>
```

Confirm test set size
nrow(train) / nrow(Sonar)

0.6009615

Let's practice!

MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

Reference

		Yes	No
	Yes	True positive	False positive
•	No	False negative	True Negative

Prediction


```
# Fit a model
model <- glm(Class ~ ., family = binomial(link = "logit"), train)
p <- predict(model, test, type = "response")
summary(p)</pre>
```

Min. 1st Qu.MedianMean 3rd Qu.Max.0.00000.00000.98850.52961.00001.0000

```
# Turn probabilities into classes and look at their frequencies
p_class <- ifelse(p > 0.50, "M", "R")
table(p_class)
p_class
```

Μ		R					
44	39	9					

- Make a 2-way frequency table
- Compare predicted vs. actual classes

```
# Make simple 2-way frequency table
table(p_class, test[["Class"]])
```

p_class	Μ	R
М	13	31
R	30	9

Use caret's helper function to calculate additional statistics confusionMatrix(p_class, test[["Class"]])

Reference Prediction M R M 13 31 R 30 9 Accuracy : 0.2651 95% CI : (0.1742, 0.3734) No Information Rate : 0.5181 P-Value [Acc > NIR] : 1 Kappa : -0.4731 Mcnemar's Test P-Value : 1 Sensitivity : 0.3023 Specificity : 0.2250 Pos Pred Value : 0.2955 Neg Pred Value : 0.2308

R datacamp

Let's practice!

Class probabilities and predictions

MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

R datacamp

Different thresholds

- Not limited to 50% threshold
 - 10% would catch more mines with less certainty
 - 90% would catch fewer mines with more certainty 0
- Balance true positive and false positive rates
- Cost-benefit analysis \bullet

Use a larger cutoff
p_class <- ifelse(p > 0.99, "M", "R")
table(p_class)

p_class			
M R			
41 42			

Make simple 2-way frequency table
table(p_class, test[["Class"]])

p_class	Μ	R
М	13	28
R	30	12

Confusion matrix with caret

Use caret to produce confusion matrix confusionMatrix(p_class, test[["Class"]])

Reference	
Prediction M R	
M 13 28	
R 30 12	
Accuracy	: 0.3012
95% CI	: (0.2053, 0.4118)
No Information Rate	: 0.5181
P-Value [Acc > NIR]	: 1.0000
Карра	: -0.397
Mcnemar's Test P-Value	: 0.8955
Sensitivity	: 0.3023
Specificity	: 0.3000
Pos Pred Value	: 0.3171
Neg Pred Value	: 0.2857

R datacamp

Let's practice!

Introducing the ROC curve

MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

The challenge

- Many possible classification thresholds
- Requires manual work to choose
- Easy to overlook a particular threshold
- Need a more systematic approach

ROC curves

- Plot true/false positive rate at every possible threshold
- Visualize tradeoffs between two extremes (100% true positive vs. 0% false positive)
- Result is an ROC curve
- Developed as a method for analyzing radar signals

An example ROC curve

Create ROC curve library(caTools) colAUC(p, test[["Class"]], plotROC = TRUE)

Probability of False Alarm (1-Specificity)

R datacamp

Let's practice!

Area under the curve (AUC)

MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

R datacamp

From ROC to AUC

MACH

R datacamp

Defining AUC

- Single-number summary of model accuracy
- Summarizes performance across all thresholds
- Rank different models within the same dataset

Defining AUC

- Ranges from 0 to 1
 - 0.5 = random guessing
 - 1 = model always right
 - 0 = model always wrong
- Rule of thumb: AUC as a letter grade
 - 0.9 = "A"
 - 0.8 = "B"
 - 0 ...

Let's practice!

