Random forests and wine

MACHINE LEARNING WITH CARET IN R

Software Engineer at RStudio and creator of caret

- Popular type of machine learning model
- Good for beginners
- Robust to overfitting
- Yield very accurate, non-linear models

- Unlike linear models, they have hyperparameters
- Hyperparameters require manual specification
- Can impact model fit and vary from dataset-to-dataset ${\bullet}$
- Default values often OK, but occasionally need adjustment \bullet

- Start with a simple decision tree
- Decision trees are fast, but not very accurate

- Improve accuracy by fitting many trees
- Fit each one to a bootstrap sample of your data
- Called *bootstrap aggregation* or *bagging*
- Randomly sample columns at each split

Running a random forest

Load some data library(caret) library(mlbench) data(Sonar)

Set seed set.seed(42)

```
model <- train(</pre>
  Class ~ .,
  data = Sonar,
  method = "ranger"
```

acamp

Plotting the results

R datacamp

Let's practice!

Explore a wider model space

MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

R datacamp

Random forests require tuning

- Hyperparameters control how the model is fit
- Selected "by hand" before the model is fit
- Most important is mtry
 - Number of randomly selected variables used at each split
- Lower value = more random
- Higher value = less random
- Hard to know the best value in advance

Example: sonar data

- tuneLength argument to caret::train()
- Tells caret how many different variations to try

Load some data
library(caret)
library(mlbench)
data(Sonar)

```
# Fit a model with a deeper tuning grid
model <- train(
   Class ~ .,
   data = Sonar,
   method = "ranger",
   tuneLength = 10
)</pre>
```

Plot the results
plot(model)

Plot the results

of Randomly Selected Predictors

R datacamp

Let's practice!

Custom tuning grids MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

Pros and cons of custom tuning

- Pass custom tuning grids to tuneGrid argument
- Advantages
 - Most flexible method for fitting caret models
 - Complete control over how the model is fit
- Disadvantages
 - Requires some knowledge of the model
 - Can dramatically increase run time

Custom tuning example

```
# Define a custom tuning grid
myGrid <- data.frame(mtry = c(2, 3, 4, 5, 10, 20))</pre>
```

```
# Fit a model with a custom tuning grid
set.seed(42)
model <- train(
   Class ~ .,
   data = Sonar,
   method = "ranger",
   tuneGrid = myGrid
)</pre>
```

Plot the results
plot(model)

R datacamp

Custom tuning

of Randomly Selected Predictors

latacamp

Let's practice!

Introducing glmnet MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

Introducing glmnet

- Extension of glm models with built-in variable selection \bullet
- Helps deal with collinearity and small samples sizes
- Two primary forms
 - Lasso regression: penalizes number of non-zero coefficients 0
 - Ridge regression: penalizes absolute magnitude of 0 coefficients
- Attempts to find a parsimonious (i.e. simple) model
- Pairs well with random forest models

Tuning glmnet models

- Combination of lasso and ridge regression
- Can fit a mix of the two models
- alpha [0, 1] : pure ridge to pure lasso
- lambda (0, infinity) : size of the penalty

Example: "don't overfit"

```
# Load data
overfit <- read.csv("overfit.csv")</pre>
```

```
# Make a custom trainControl
myControl <- trainControl(
   method = "cv",
   number = 10,
   summaryFunction = twoClassSummary,
   classProbs = TRUE, # <- Super important!
   verboseIter = TRUE</pre>
```


Try the defaults

```
# Plot results
plot(model)
```

- 3 values of alpha
- 3 values of Lambda

Plot the results

V datacamp

Let's practice!

glmnet with custom tuning grid MACHINE LEARNING WITH CARET IN R

Zach Mayer

Data Scientist at DataRobot and coauthor of caret

R datacamp

Custom tuning glmnet models

- 2 tuning parameters: alpha and lambda
- For single alpha, all values of lambda fit simultaneously
- Many models for the "price" of one

Example: glmnet tuning

```
# Make a custom tuning grid
myGrid <- expand.grid(
    alpha = 0:1,
    lambda = seq(0.0001, 0.1, length = 10)
)</pre>
```

```
# Fit a model
set.seed(42)
model <- train(
    y ~ .,
    overfit,
    method = "glmnet",
    tuneGrid = myGrid,
    trControl = myControl
)</pre>
```

Plot results
plot(model)

R datacamp

Compare models visually

R datacamp

Full regularization path

plot(model\$finalModel)

R datacamp

Let's practice!

