Introducing xts and zoo objects

MANIPULATING TIME SERIES DATA WITH XTS AND ZOO IN R

Jeffrey Ryan Creator of xts and quantmod

What is xts?

- eXtensible Time Series
- An extended zoo object
- Matrix + Index
- Observations + Times

+		
Index	Matrix	

An xts example

```
# XTS = MATRIX + INDEX
x <- matrix(1:4, ncos = 2, nrow = 2)</pre>
Х
```

	[,1]	[,2]
[1,]	1	3
[2,]	2	4

```
idx <- as.Date(c("2015-01-01", "2015-02-01"))
idx
```

```
"2015-01-01" "2015-02-01"
```

• Class: Date, POSIX times, timeDate, chron,...

tacamp

An xts example

```
# XTS = MATRIX + INDEX
X <- xts(x, order.by = idx)</pre>
Х
```

	[,1]	[,2]
2015-01-01	1	3
2015-02-01	2	4

The xts constructor

```
xts(x = NULL,
    order.by = index(x),
    frequency = NULL,
    unique = NULL,
    tzone = Sys.getenv("TZ"))
```

- tzone: time zone of your series
- unique: forces times to be unique
- index is in increasing order of time

An xts example

```
# XTS = MATRIX + INDEX
X <- xts(x, order.by = idx)</pre>
Х
```

	[,1]	[,2]
2015-01-01	1	3
2015-02-01	2	4

Special xts behavior

- xts is a matrix with associated times for each observation
- Subsets preserve matrix form
- Attributes are preserved
 - i.e. a time-stamp that was acquired
- xts is a subclass of zoo

Deconstructing xts

- Use internal components \bullet
- coredata(x) is used to extract the data component

```
coredata(x, fmt = FALSE)
```

index(x) to extract the index a.k.a. times

```
index(x)
```


Let's practice!

Importing, exporting and converting time series

MANIPULATING TIME SERIES DATA WITH XTS AND ZOO IN R

Jeffrey Ryan Creator of xts and quantmod

Reality check

- Data usually already exists, and needs wrangling \bullet Often data isn't in your preferred class 0
- Data needs to be imported into R and converted to xts
- You will convert, read and export xts objects

Converting using as.xts()

Load data from R datasets
data(sunspots)
class(sunspots)

"ts"

sunspots_xts <- as.xts(sunspots)
class(sunspots_xts)</pre>

head(sunspots_xts)

		[,1]
Jan	1749	58.0
Feb	1749	62.6
Mar	1749	70.0
Apr	1749	55.7
May	1749	85.0
Jun	1749	83.5

"xts" "zoo"

Importing external data to xts

- Read data into R using built in (or external) functions o i.e. read.table(), read.csv(), and read.zoo()
- Coerce data to xts using

```
as.xts(read.table("file"))
as.xts(read.zoo("file"))
```


Exporting xts from R

- Sometimes you will need your data outside of R
- Use write.zoo() for external use (i.e. text files)

write.zoo(x, "file")

Use saveRDS for R use

saveRDS(x, "file")

Let's practice!

