Background on modeling for explanation

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim Assistant Professor of Statistical and Data Sciences

R datacamp

Course overview

- 1. Introduction to modeling: theory and terminology
- 2. Regression:
 - Simple linear regression
 - Multiple regression 0
- 3. Model assessment

General modeling framework formula

$$y = f(ec{x}) + \epsilon$$

Where:

- y: outcome variable of interest
- \vec{x} : explanatory/predictor variables
- f(): function of the relationship between y and \vec{x} AKA the signal
- *ε*: unsystematic error component AKA *the noise*

Two modeling scenarios

Modeling for either:

- Explanation: \vec{x} are *explanatory* variables
- Prediction: \vec{x} are *predictor* variables

Modeling for explanation example

A University of Texas in Austin study on teaching evaluation scores (available at openintro.org).

Question: Can we explain differences in teaching evaluation score based on various teacher attributes?

Variables:

- y: Average teaching score based on students evaluations
- \vec{x} : Attributes like rank , gender , age , and bty_avg

Modeling for explanation example

From the moderndive package for ModernDive.com:

library(dplyr)
library(moderndive)
glimpse(evals)

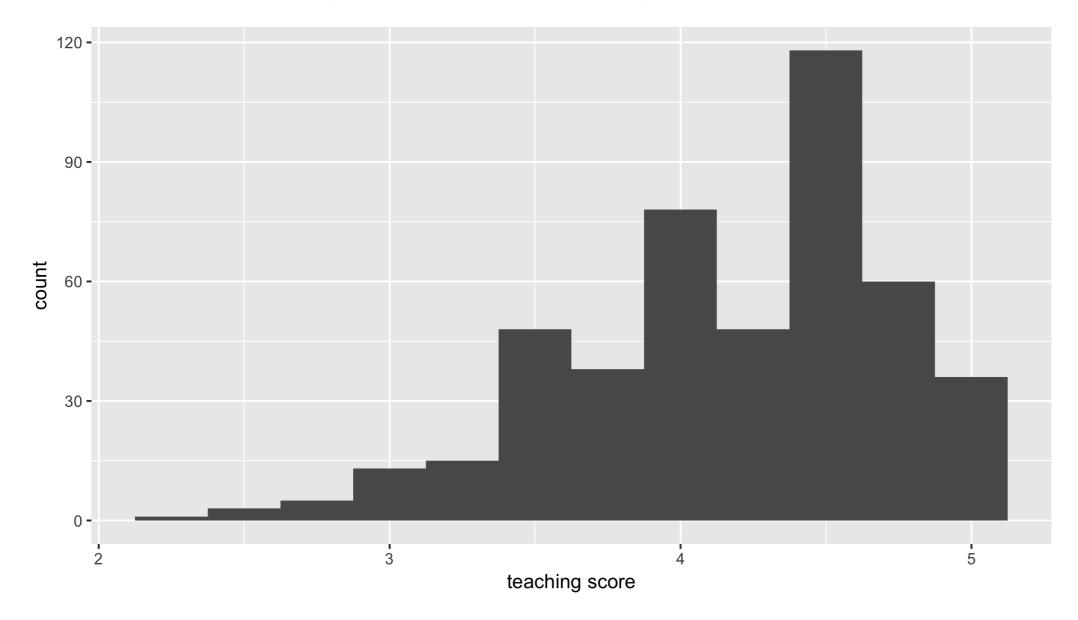
Observations:	63	
Variables: 13		
\$ ID	<int> 1, 2, 3, 4,</int>	5, 6, 7, 8, 9, 10
\$ score	<dbl> 4.7, 4.1, 3.</dbl>	9, 4.8, 4.6, 4.3
\$ age	<int> 36, 36, 36,</int>	36, 59, 59, 59, 51
\$ bty_avg	<dbl> 5.000, 5.000</dbl>	, 5.000, 5.000
\$ gender	<fct> female, fema</fct>	le, female, female
• • •		

R datacamp

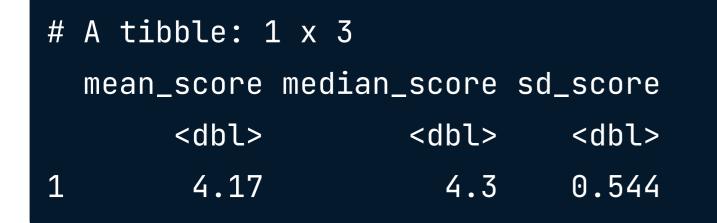
Three basic steps to exploratory data analysis (EDA):

- 1. Looking at your data
- 2. Creating visualizations
- 3. Computing summary statistics


```
library(ggplot2)
ggplot(evals, aes(x = score)) +
  geom_histogram(binwidth = 0.25) +
  labs(x = "teaching score", y = "count")
```

Compute mean, median, and standard deviation
evals %>%
 summarize(mean_score = mean(score),
 median_score = median(score),
 sd_score = sd(score))



Let's practice! MODELING WITH DATA IN THE TIDYVERSE

Background on modeling for prediction

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim Assistant Professor of Statistical and Data Sciences

R datacamp

Modeling for prediction example

A dataset of house prices in King County, Washington State, near Seattle (available at Kaggle.com).

Question: Can we predict the sale price of houses based on their features?

Variables:

- y: House sale price is US dollars
- x: Features like sqft_living, condition, bedrooms,
 yr_built, waterfront

Modeling for prediction example

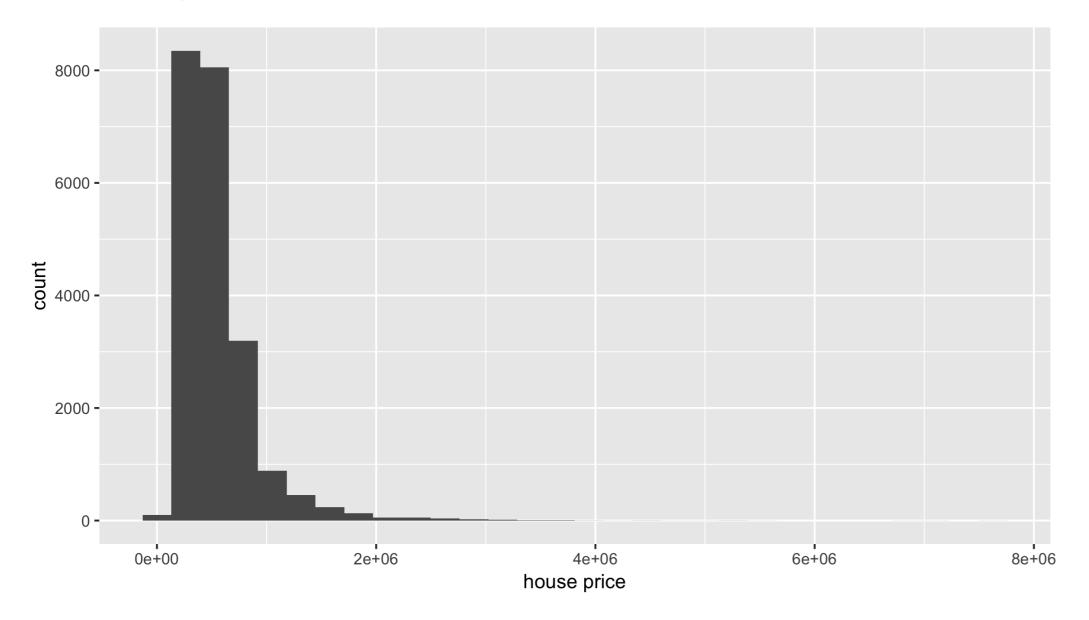
From the moderndive package for ModernDive:

library(dplyr) library(moderndive) glimpse(house_prices)

Observations: 2	21,613
Variables: 21	
\$ id	<chr> "7129300520", "6414100192"</chr>
\$ date	<dttm> 2014-10-13, 2014-12-09, 2015</dttm>
\$ price	<dbl> 221900, 538000, 180000, 604000</dbl>
• • •	


```
library(ggplot2)
ggplot(house_prices, aes(x = price)) +
  geom_histogram() +
  labs(x = "house price", y = "count")
```

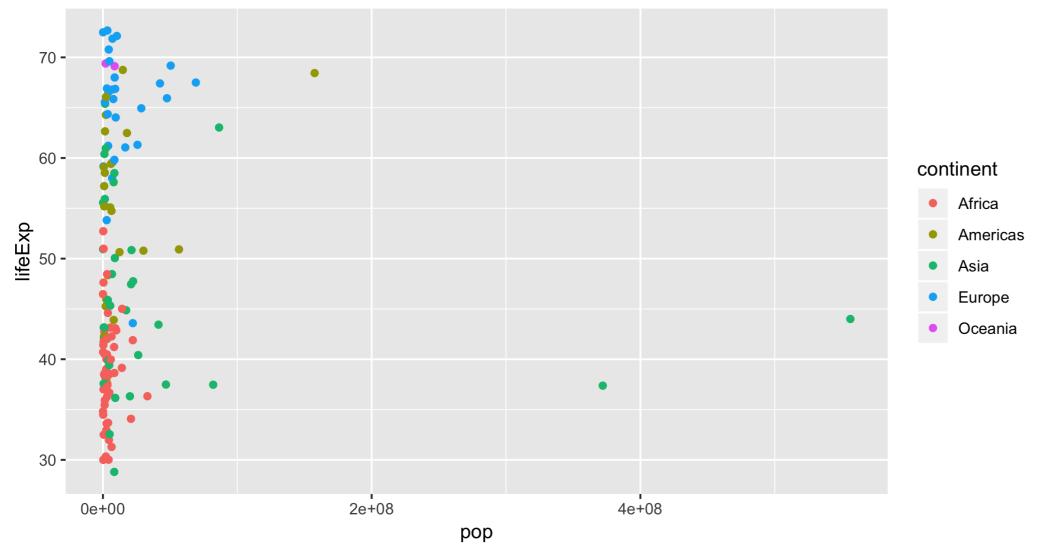

Histogram of outcome variable



R datacamp

Gapminder data

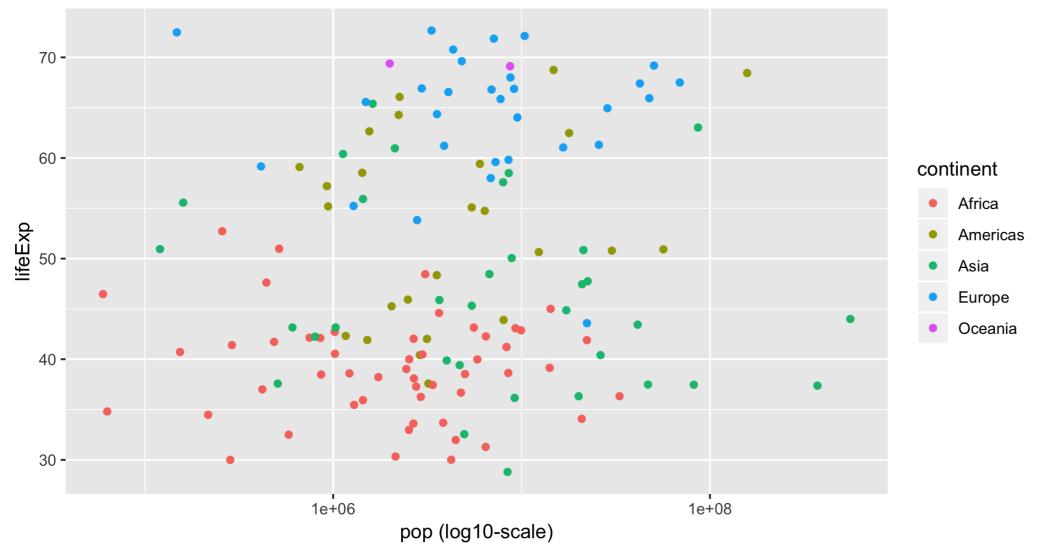
1952 country-level life expectancy vs population



datacamp

Log10 rescaling of x-axis

1952 country-level life expectancy vs population



MODELING WITH DATA IN THE TIDYVERSE

R datacamp

Log10 transformation

log10() transform price and size house_prices <- house_prices %>% mutate(log10_price = log10(price)) %>% select(price, log10_price)

# A	tibble:	21,613	Х	2
	•		•	

	price	log10_price
	<dbl></dbl>	<dbl></dbl>
1	221900	5.35
2	538000	5.73
3	180000	5.26
4	604000	5.78
5	510000	5.71
		(

6 1225000 6.09

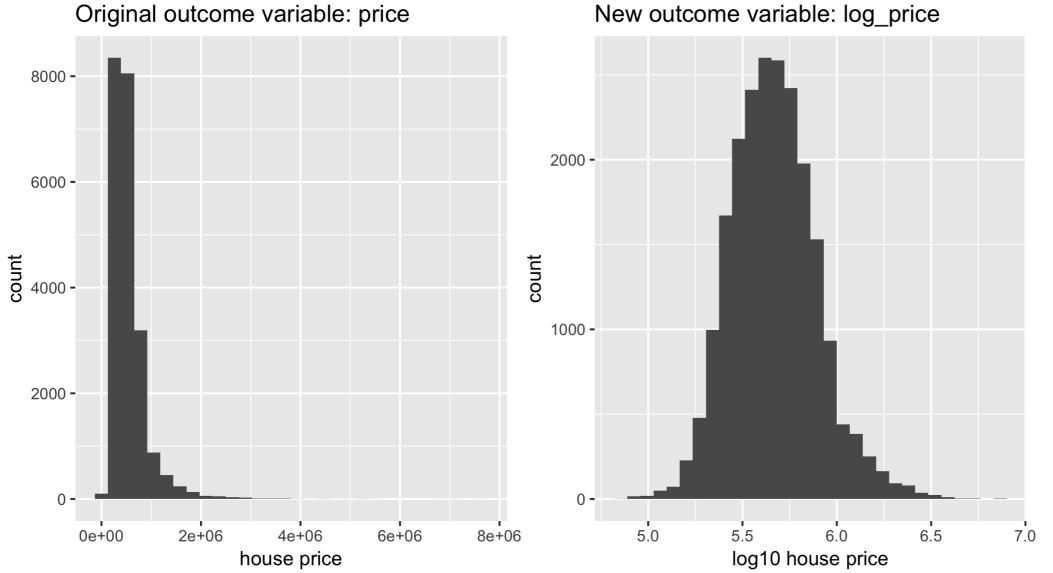
R datacamp

Histogram of new outcome variable

```
# Histogram of original outcome variable
ggplot(house_prices, aes(x = price)) +
geom_histogram() +
labs(x = "house price", y = "count")
```

```
# Histogram of new, log10-transformed outcome variable
ggplot(house_prices, aes(x = log10_price)) +
   geom_histogram() +
   labs(x = "log10 house price", y = "count")
```


Comparing before and after log10-transformation



New outcome variable: log_price

acamp

Let's practice! MODELING WITH DATA IN THE TIDYVERSE

The modeling problem for explanation

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim Assistant Professor of Statistical and Data Sciences

R datacamp

Recall: General modeling framework formula $y = f(\vec{x}) + \epsilon$

Where:

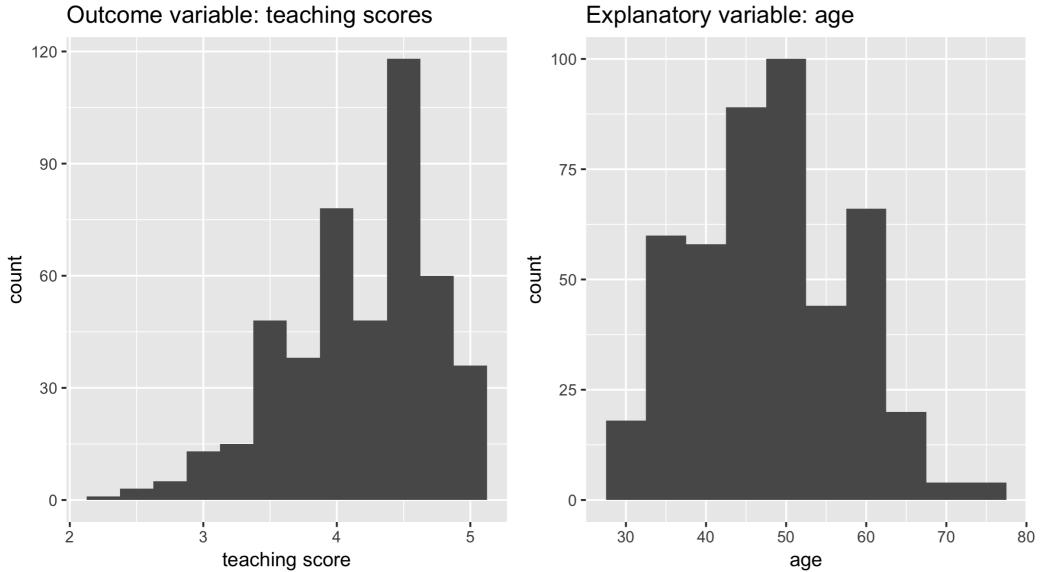
- y: outcome variable of interest
- \vec{x} : explanatory/predictor variables
- f(): function of the relationship between y and \vec{x} AKA the signal
- *c*: unsystematic error component AKA *the noise*

The modeling problem

Consider $y = f(\vec{x}) + \epsilon$.

- 1. f() and ϵ are unknown
- 2. *n* observations of y and \vec{x} are known/given in the data
- 3. Goal: Fit a model $\hat{f}()$ that approximates f() while ignoring ϵ
- **Goal restated**: Separate the signal from the noise 4.
- 5. Can then generate *fitted/predicted* values $\hat{y} = \hat{f}(\vec{x})$

Modeling for explanation example



Explanatory variable: age

tacamp

EDA of relationship

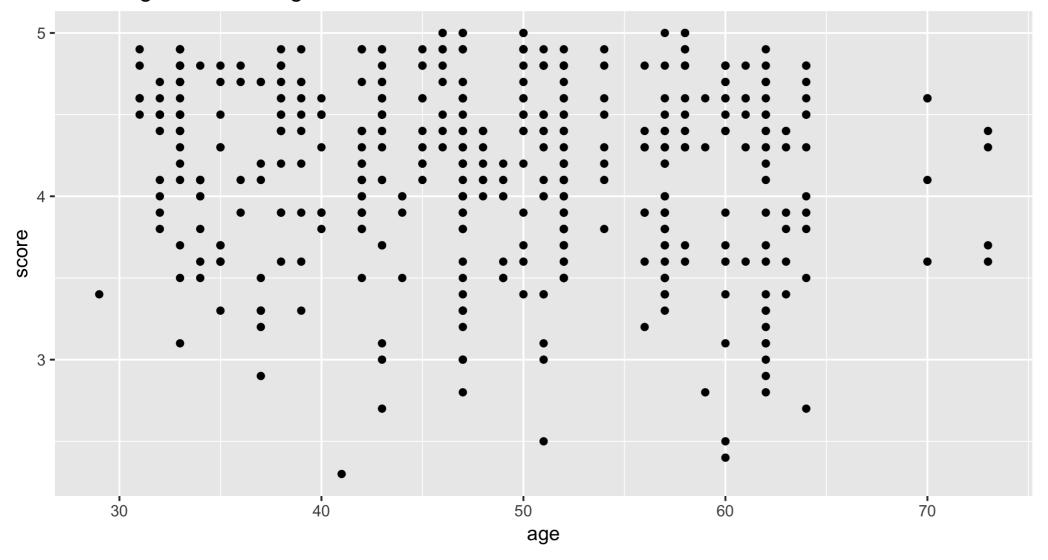
library(ggplot2) library(dplyr) library(moderndive)

```
ggplot(evals, aes(x = age, y = score)) +
 geom_point() +
 labs(x = "age", y = "score",
      title = "Teaching score over age")
```


EDA of relationship

Teaching score over age

datacamp



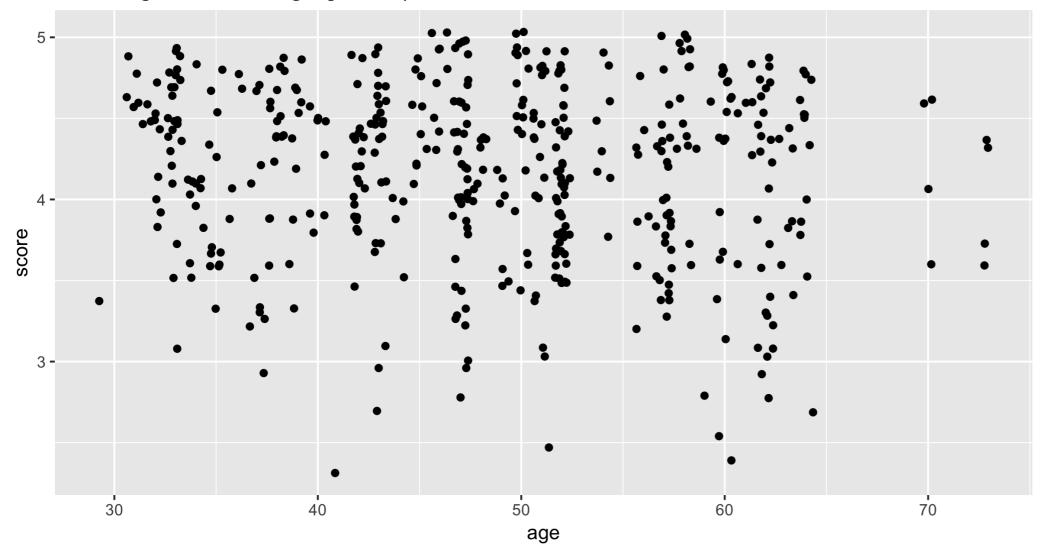
Jittered scatterplot

library(ggplot2)
library(dplyr)
library(moderndive)

```
# Use geom_jitter() instead of geom_point()
ggplot(evals, aes(x = age, y = score)) +
   geom_jitter() +
   labs(x = "age", y = "score",
        title = "Teaching score over age (jittered)")
```


Jittered scatterplot

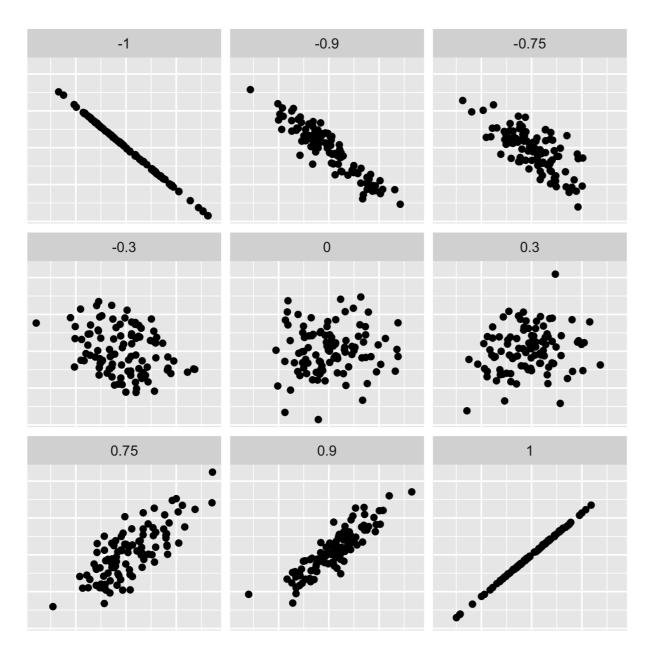
Teaching score over age (jittered)



MODELING WITH DATA IN THE TIDYVERSE

R datacamp

Correlation coefficient



datacamp

Computing the correlation coefficient

evals %>%

summarize(correlation = cor(score, age))

Let's practice! MODELING WITH DATA IN THE TIDYVERSE

The modeling problem for prediction

MODELING WITH DATA IN THE TIDYVERSE

Albert Y. Kim Assistant Professor of Statistical and Data Sciences

Modeling problem

Consider $y = f(\vec{x}) + \epsilon$.

- 1. f() and ϵ are unknown
- 2. *n* observations of y and \vec{x} are known/given in the data
- 3. Goal: Fit a model $\hat{f}()$ that approximates f() while ignoring ϵ
- **Goal restated**: Separate the *signal* from the *noise* 4.
- 5. Can then generate *fitted/predicted* values $\hat{y} = \hat{f}(\vec{x})$

Difference between explanation and prediction

Key difference in modeling goals:

- 1. Explanation: We care about the form of $\hat{f}()$, in particular any values quantifying relationships between y and \vec{x}
- 2. **Prediction**: We don't care so much about the form of $\hat{f}()$, only that it yields "good" predictions \hat{y} of y based on \vec{x}

Condition of house

house_prices %>% select(log10_price, condition) %>% glimpse()

Observations: 21,613 Variables: 2 \$ log10_price <dbl> 5.346157, 5.730782, 5.255273... \$ condition <fct> 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3...

Exploratory data visualization: boxplot

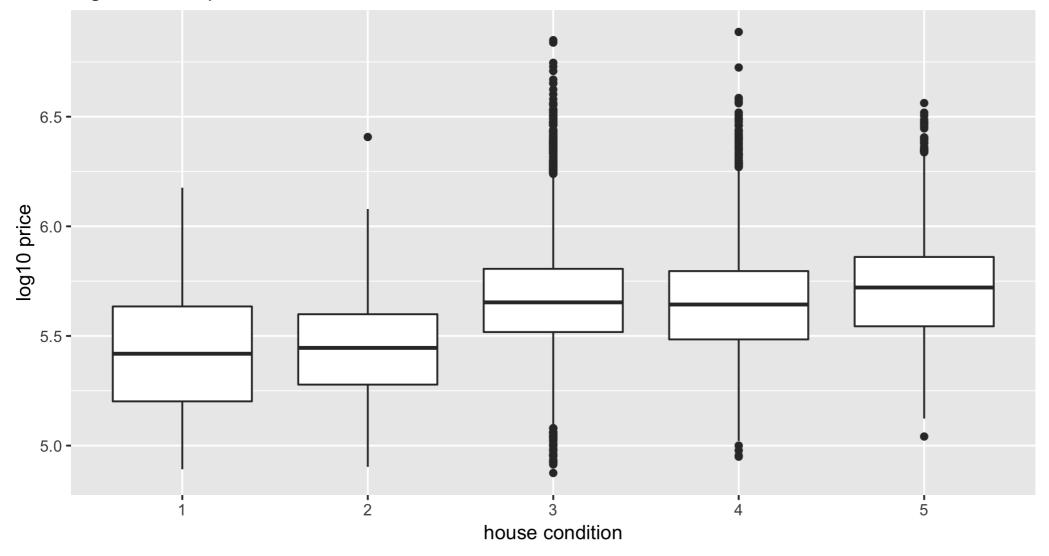
```
library(ggplot2)
library(dplyr)
library(moderndive)
```

```
# Apply log10-transformation to outcome variable
house_prices <- house_prices %>%
    mutate(log10_price = log10(price))
# Boxplot
ggplot(house_prices, aes(x = condition, y = log10_price))
geom_boxplot() +
labs(x = "house condition", y = "log10 price",
    title = "log10 house price over condition")
```

R datacamp

Exploratory data visualization: boxplot

log10 house price over condition



Exploratory data summaries

```
house_prices %>%
group_by(condition) %>%
summarize(mean = mean(log10_price),
    sd = sd(log10_price), n = n())
```

#	A tibble:	5 x 4		
	condition	mean	sd	n
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	1	5.42	0.293	30
2	2	5.45	0.233	172
3	3	5.67	0.224	14031
4	4	5.65	0.228	5679
5	5	5.71	0.244	1701

R datacamp

Exploratory data summaries

Prediction for new house with condition 4 in dollars $10^{(5.65)}$

446683.6

Let's practice! MODELING WITH DATA IN THE TIDYVERSE

