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Refresher: Multiple regression
Two models with di�erent pairs of explanatory/predictor

variables:

# Model 1 - Two numerical: 
model_price_1 <- lm(log10_price ~ log10_size + yr_built,  
                    data = house_prices) 
 
# Model 3 - One numerical & one categorical: 
model_price_3 <- lm(log10_price ~ log10_size + condition,  
                    data = house_prices) 
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Refresher: Sum of squared residuals
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Refresher: Sum of squared residuals

# A tibble: 1 x 1 
  sum_sq_residuals 
             <dbl> 
1             585. 

# Model 1 
model_price_1 <- lm(log10_price ~ log10_size + yr_built,  
                    data = house_prices) 
get_regression_points(model_price_1) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(sum_sq_residuals = sum(sq_residuals)) 
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Refresher: Sum of squared residuals

# A tibble: 1 x 1 
  sum_sq_residuals 
             <dbl> 
1             608. 

# Model 3 
model_price_3 <- lm(log10_price ~ log10_size + condition,  
                    data = house_prices) 
 
get_regression_points(model_price_3) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(sum_sq_residuals = sum(sq_residuals)) 
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R-squared

R = 1 −

R  is between 0 & 1

Smaller R  ~ "poorer �t"

R = 1 ~ "perfect �t" and R = 0 ~ "no �t"
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High R-squared value example

R = 1 −2
Var(y)

Var(residuals)
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High R-squared value: "Perfect" fit

R = 1 −2
Var(y)

Var(residuals)
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Low R-squared value example

R = 1 −2
Var(y)

Var(residuals)
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Low R-squared value example

R = 1 −2
Var(y)

Var(residuals)
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Numerical interpretation

Since Var(y) ≥ Var(residuals) and 

R = 1 − =

R 's interpretation is: the proportion of the total variation in the

outcome variable y that the model explains.
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Computing R-squared

# Model 1: price as a function of size and year built 
model_price_1 <- lm(log10_price ~ log10_size + yr_built, 
                    data = house_prices) 
 
get_regression_points(model_price_1) %>% 
  summarize(r_squared = 1 - var(residual)/var(log10_price)) 

# A tibble: 1 x 1 
  r_squared 
      <dbl> 
1     0.483 
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Computing R-squared

# Model 3: price as a function of size and condition 
model_price_3 <- lm(log10_price ~ log10_size + condition, 
                    data = house_prices) 
 
get_regression_points(model_price_3) %>% 
  summarize(r_squared = 1 - var(residual)/var(log10_price)) 

# A tibble: 1 x 1 
  r_squared 
      <dbl> 
1     0.462 
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Refresher: Residuals
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Mean squared error

# Model 1: price as a function of size and year built 
model_price_1 <- lm(log10_price ~ log10_size + yr_built, 
                    data = house_prices) 
 
# Sum of squared residuals: 
get_regression_points(model_price_1) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(sum_sq_residuals = sum(sq_residuals)) 

# A tibble: 1 x 1 
  sum_sq_residuals
             <dbl>
1             585.
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Mean squared error

# Mean squared error: use mean() instead of sum(): 
get_regression_points(model_price_1) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(mse = mean(sq_residuals)) 

# A tibble: 1 x 1 
     mse 
   <dbl> 
1 0.0271 
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Root mean squared error

# Root mean squared error: 
get_regression_points(model_price_1) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(mse = mean(sq_residuals)) %>% 
  mutate(rmse = sqrt(mse)) 

# A tibble: 1 x 2 
     mse  rmse 
   <dbl> <dbl> 
1 0.0271 0.164 
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RMSE of predictions on new houses

# Recreate data frame of "new" houses 
new_houses <- data_frame( 
  log10_size = c(2.9, 3.6), 
  condition = factor(c(3, 4)) 
) 
new_houses 

# A tibble: 2 x 2 
  log10_size condition 
       <dbl> <fct>     
1        2.9 3         
2        3.6 4    
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RMSE of predictions on new houses

# Get predictions 
get_regression_points(model_price_3, 
                      newdata = new_houses) 

# A tibble: 2 x 4 
     ID log10_size condition log10_price_hat 
  <int>      <dbl> <fct>               <dbl> 
1     1        2.9 3                    5.34 
2     2        3.6 4                    5.94 



MODELING WITH DATA IN THE TIDYVERSE

RMSE of predictions on new houses

# Compute RMSE 
get_regression_points(model_price_3, 
                      newdata = new_houses) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(mse = mean(sq_residuals)) %>% 
  mutate(rmse = sqrt(mse)) 

Error in mutate_impl(.data, dots) :  
  Evaluation error: object 'residual' not found. 
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Validation set approach
Use two independent datasets to:

1. Train/�t your model

2. Evaluate your model's predictive power i.e. validate your

model
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Training/test set split
Randomly split all n observations (white) into

1. A training set (blue) to �t models

2. A test set (orange) to make predictions on
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Training/test set split in R

library(dplyr) 

# Randomly shuffle order of rows: 
house_prices_shuffled <- house_prices %>%  
  sample_frac(size = 1, replace = FALSE)  

# Split into train and test: 
train <- house_prices_shuffled %>% 
  slice(1:10000) 
test <- house_prices_shuffled %>% 
  slice(10001:21613) 
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Training models on training data

train_model_price_1 <- lm(log10_price ~ log10_size + yr_built, 
                          data = train)
 
get_regression_table(train_model_price_1) 

# A tibble: 3 x 7 
  term       estimate std_error statistic p_value lower_ci... 
  <chr>         <dbl>     <dbl>     <dbl>   <dbl>    <dbl>... 
1 intercept     5.34      0.111      48.3       0    5.13... 
2 log10_size    0.923     0.009      97.5       0    0.905... 
3 yr_built     -0.001     0         -23.0       0   -0.001... 



MODELING WITH DATA IN THE TIDYVERSE

Making predictions on test data
# Train model on train: 
train_model_price_1 <- lm(log10_price ~ log10_size + yr_built, 
                          data = train) 
 
# Get predictions on test: 
get_regression_points(train_model_price_1, newdata = test) 

# A tibble: 11,613 x 6 
      ID log10_price log10_size yr_built log10_price_hat... 
   <int>       <dbl>      <dbl>    <dbl>           <dbl>... 
 1     1        5.83       3.29     1951            5.71... 
 2     2        5.88       3.40     1922            5.84... 
 3     3        6.15       3.67     2002            5.99... 
 4     4        5.62       3        1953            5.43... 
... 
# ... with 11,603 more rows 
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Assessing predictions with RMSE

# Train model: 
train_model_price_1 <- lm(log10_price ~ log10_size + yr_built, 
                          data = train) 
 
# Get predictions and compute RMSE: 
get_regression_points(train_model_price_1, newdata = test) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(rmse = sqrt(mean(sq_residuals))) 

# A tibble: 1 x 1 
   rmse 
  <dbl> 
1 0.165 
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Comparing RMSE

# Train model: 
train_model_price_3 <- lm(log10_price ~ log10_size + condition, 
                          data = train) 
 
# Get predictions and compute RMSE: 
get_regression_points(train_model_price_3, newdata = test) %>% 
  mutate(sq_residuals = residual^2) %>% 
  summarize(rmse = sqrt(mean(sq_residuals))) 

# A tibble: 1 x 1 
   rmse 
  <dbl> 
1 0.168 
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Conclusion - Where
to go from here?
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R source code for all videos
Available at h�p://bit.ly/modeling_tidyverse

http://bit.ly/modeling_tidyverse
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Other Tidyverse courses
Available here and here

https://learn.datacamp.com/skill-tracks/tidyverse-fundamentals
https://learn.datacamp.com/skill-tracks/intermediate-tidyverse-toolbox
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Refresher: General modeling framework
In general: y = f( ) + ϵ

Linear regression models: y = β + β ⋅ x + ϵ

x ⃗

0 1 1
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Parallel slopes model
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Polynomial model
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Tree models
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DataCamp courses using other models
Courses with di�erent f() in y = f( ) + ϵ:

Machine Learning with Tree-Based Models in R

Supervised Learning in R: Case Studies

x ⃗

https://www.datacamp.com/courses/machine-learning-with-tree-based-models-in-r
https://www.datacamp.com/courses/supervised-learning-in-r-case-studies
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Refresher: Regression table

# Fit model: 
model_score_1 <- lm(score ~ age, data = evals) 
 
# Output regression table: 
get_regression_table(model_score_1) 

# A tibble: 2 x 7 
  term      estimate std_error statistic p_value lower_ci upper_ci 
  <chr>        <dbl>     <dbl>     <dbl>   <dbl>    <dbl>    <dbl> 
1 intercept    4.46      0.127     35.2    0        4.21     4.71  
2 age         -0.006     0.003     -2.31   0.021   -0.011   -0.001 
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ModernDive: Online textbook

Uses tidyverse  tools: ggplot2  and dplyr

Expands on the regression models from this course

Uses evals  and house_prices  datasets (and more)

Goal: Statistical inference via data science

Available at ModernDive.com

https://moderndive.com/


Good luck!
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