Classification models

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Predicting product purchases

Classification models predict categorical outcome variables

Predicting product purchases

purchased	total_time	total_visits
yes	800	3
yes	978	7
no	220	4
no	124	5
yes	641	4

Total Website Visits

Classification algorithms

Goal: Create distinct, non-overlapping regions along set of predictor variable values

Predict the same categorical outcome in each region

Total Website Visits

Classification algorithms

Goal: Create distinct, non-overlapping regions along set of predictor variable values

Predict the same categorical outcome in each region

Logistic Regression

Popular classification algorithm which \bullet creates a *linear* separation between outcome categories

Time on Website vs Total Visits by Purchase Outcome

Total Website Visits

Total Time on Website

Lead scoring data

leads_df

# #	A tibble: 1	,328 x 7					
	purchased	total_visits	total_time	pages_per_visit	total_clicks	lead_source	U
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<
1	yes	7	1148	7	59	direct_traffic	W
2	no	8	100	2.67	24	direct_traffic	W
3	no	5	228	2.5	25	email	S
4	no	7	481	2.33	21	organic_search	W
5	no	4	177	4	37	direct_traffic	W
6	no	2	1273	2	26	email	n
7	no	3	711	3	28	organic_search	W
8	no	3	166	3	32	direct_traffic	S
9	no	3	7	3	23	organic_search	W
10	no	6	562	6	48	organic_search	S
# .	with 1,	318 more rows	3				

datacamp

MODELING WITH TIDYMODELS IN R

vest vest southeast vest vest nidwest vest southeast southeast

us_location

<fct>

vest

Data resampling

First step in fitting a model

- Create data split object with initial_split()
- Create training and test datasets with training() and testing()

```
leads_split <- initial_split(leads_df,</pre>
```

```
leads_training <- leads_split %>%
 training()
```

```
leads_test <- leads_split %>%
 testing()
```


prop = 0.75,strata = purchased)

Logistic regression model specification

Model specification in parsnip

- logistic_reg()
 - General interface to logistic regression 0 models in parsnip
 - Common engine is 'glm' 0
 - Mode is 'classification' 0

logistic_model <- logistic_reg() %>% set_engine('glm') %>% set_mode('classification')

Model fitting

Once model is specified, the fit() function is used for model training

- Pass model object to fit()
- Specify model formula
- Provide training data, data

```
logistic_fit <- logistic_model %>%
      data = leads_training)
```


fit(purchased ~ total_visits + total_time,

Predicting outcome categories

The predict() function

- new_data specifies dataset on which to predict new values
- type
 - 'class' provides categorical 0 predictions

Standardized output from predict()

- 1. Returns a tibble
- 2. When type is 'class', returns a factor column named .pred_class

class_preds <- logistic_fit %>% predict(new_data = leads_test, type = 'class') class_preds # A tibble: 332 x 1 .pred_class <fct> 1 no2 yes 3 no 4 no 5 yes # ... with 327 more rows

Estimated probabilities

Setting type to 'prob' provides estimated probabilities for each outcome category

The predict() function will return a tibble with multiple columns

- One for each category of the outcome variable
- Naming convention is .pred_{outcome_category}

```
prob_preds <- logistic_fit %>%
 predict(new_data = leads_test,
          type = 'prob')
```

prob_preds

# A t:	ibble: 33	2 x 2
.p	red_yes .	pred_no
	<dbl></dbl>	<dbl></dbl>
1	0.134	0.866
2	0.729	0.271
3	0.133	0.867
4	0.0916	0.908
5	0.598	0.402
#	with 327	more row

Combining results

For model evaluation with the yardstick package, a results tibble will be needed

The outcome variable from the test dataset and prediction tibbles can be combined with bind_cols()

leads_results <- leads_test %>% select(purchased) %>% bind_cols(class_preds, prob_preds)

leads_results

# A tibble:	332 x 4		
purchased	l.pred_class	.pred_yes	.pred_no
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1 no	no	0.134	0.866
2 yes	yes	0.729	0.271
3 no	no	0.133	0.867
4 no	no	0.0916	0.908
5 yes	yes	0.598	0.402
# with 3	27 more rows		

Telecommunications data

telecom_df

<pre># A tibble: 975 x canceled_servio</pre>	9 ce cellular_service	avg_data_gb a	avg_call_mins	avg_intl_min:	s internet_service	contract	months_with_company	monthly_charges
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1 yes	single_line	7.78	497	127	fiber_optic	<pre>month_to_mont</pre>	:h 7	76.4
2 yes	single_line	9.04	336	88	fiber_optic	<pre>month_to_mont</pre>	:h 10	94.9
3 no	single_line	10.3	262	55	fiber_optic	one_year	50	103.
4 yes	multiple_lines	5.08	250	107	digital	one_year	53	60.0
5 no	multiple_lines	8.05	328	122	digital	two_year	50	75.2
6 no	single_line	9.3	326	114	fiber_optic	<pre>month_to_mont</pre>	h 25	95.7
7 yes	multiple_lines	8.01	525	97	fiber_optic	<pre>month_to_mont</pre>	:h 19	83.6
8 no	multiple_lines	9.4	312	147	fiber_optic	one_year	50	99.4
9 yes	single_line	5.29	417	96	digital	<pre>month_to_mont</pre>	:h 8	49.8
10 no	multiple_lines	9.96	340	136	fiber_optic	<pre>month_to_mont</pre>	h 61	106.
# with 965 mor	re rows							

Let's practice! MODELING WITH TIDYMODELS IN R

Assessing model fit

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Binary classification

Outcome variable with two levels

- **Positive class**
 - Event of interest to predict 0
 - "yes" in purchased variable
- **Negative class**
 - "no"
- In tidymodels outcome variable needs to \bullet be a factor
 - First level is positive class 0
 - Check order with levels() 0

leads_df

<pre># A tibble:</pre>	1,328 x 7
purchased	total_visit
<fct></fct>	<dbl></dbl>
1 yes	7
2 no	8
3 no	5
# with 2	1,325 more r

levels(leads_df[['purchased']])

[1] "yes" "no"

us_location S • • • <fct> west west southeast OWS

Confusion matrix

Matrix with counts of all combinations of actual and predicted outcome values

Correct Predictions

- True Positive (TP)
- True Negative (TN)

Classification Errors

- False Positive (FP)
- False Negative (FN)

Truth

Positive (+) Negative (-)

TP	FP
=N	ΤN

Classification metrics with yardstick

Creating confusion matrices and other model fit metrics with yardstick

- Requires a tibble of model results which contain:
 - True outcome values
 - purchased
 - Predicted outcome categories 0
 - .pred_class
 - Estimated probabilities of each category 0
 - .pred_yes
 - .pred_no

leads_results

<pre># A tibble:</pre>	332 x 4		
purchased	.pred_class	.pred_yes	.pred_no
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1 no	no	0.134	0.866
2 yes	yes	0.729	0.271
3 no	no	0.133	0.867
4 no	no	0.0916	0.908
5 yes	yes	0.598	0.402
6 no	no	0.128	0.872
7 yes	no	0.112	0.888
8 no	no	0.169	0.831
9 no	no	0.158	0.842
10 yes	yes	0.520	0.480
# with 3	22 more rows		

Confusion matrix with yardstick

The conf_mat() function

- Tibble of model results
- truth column with true outcomes
- estimate column with predicted outcomes

Logistic regression on leads_df

- Correctly classified 252 out of 332 customers (76%)
- 46 false negatives
- 34 false positives

conf_mat(leads_results, truth = purchased,

Truth					
Prediction	yes	no			
yes	74	34			
no	46	178			

estimate = .pred_class)

Classification accuracy

The accuracy() function

- Takes same arguments as conf_mat()
- Calculates classification accuracy

TP + TNTP + TN + FP + FN accuracy(leads_results, truth = purchased,

#	А	tibble:		1	Χ	3
	. n	netric	•	es	sti	imato
	<(chr>	<	<cł< th=""><th>r></th><th>></th></cł<>	r>	>
1	ac	curacy	k)ir	nar	יע

- yardstick functions always return a tibble
 - .metric type of metric 0
 - .estimate calculated value 0

estimate = .pred_class)

.estimate nn <dbl> 0.759

Sensitivity

In many cases *accuracy* is not the best metric

- leads_df data
 - Classifying all as 'no' gives 64% accuracy 0

Sensitivity

Proportion of all positive cases that were correctly classified

- Of customers *who did purchase*, what proportion did our model predict correctly?
 - Lower false negatives increase sensitivity 0

TPTP + FN

Calculating sensitivity

The sens() function

- Takes same arguments as conf_mat() and accuracy()
- Returns sensitivity calculation in
 - .estimate column

```
sens(leads_results,
     truth = purchased,
     estimate = .pred_class)
```

#	Α	tibble):	1	Χ	3	
	. N	netric	. (est	tin	nat	0
	<0	chr>	<(chr	ר>		
1	Se	ens	b	ina	ary	/	

.estimate <dbl> 0.617

Specificity

Specificity is the proportion of all negative cases that were correctly classified

Of customers who *did not purchase*, what proportion did our model predict correctly? Lower false positives increase specificity 0

1 - Specificity

- Also called the *false positive rate* (FPR)
- Proportion of false positives among true negatives

Truth Negative (-) Positive (+) TΡ FP ΤN FN

TNTN + FP

Calculating specificity

The spec() function

- Takes same arguments as sens()
- Returns specificity calculation in .estimate column

spec(leads_results, truth = purchased, estimate = .pred_class)

#	А	tibble	€:	1	Х	3	
	. N	netric	. 6	est	tin	nat	0
	<0	chr>	<(chr	ר>		
1	sŗ	Dec	bi	ina	ary	/	

.estimate <dbl> 0.840

Creating a metric set

User-defined metric sets

- metric_set() function
 - Creates user-defined metric function with selected yardstick metrics
 - Pass yardstick metric function names 0 into metric_set()
 - Use custom function to calculate metrics

custom_metrics <metric_set(accuracy, sens, spec)

custom_metrics(leads_results,

#	A tibble:	3 x 3
	.metric	.estimator
	<chr></chr>	<chr></chr>
1	accuracy	binary
2	sens	binary
3	spec	binary

MODELING WITH TIDYMODELS IN R

truth = purchased, estimate = .pred_class)

.estimate <dbl> 0.759 0.617 0.840

Many metrics

Binary classification metrics

- Wide variety of binary classification metrics
 - accuracy(), kap(), sens(), spec(), 0 ppv(), npv(), mcc(), j_index(), bal_accuracy(), detection_prevalence(), precision(), recall(), f_meas()
- Pass results of conf_mat() to summary() to calculate all

https://yardstick.tidymodels.org/reference

conf_mat(leads_results, truth = purchased, estimate = .pred_class) %>% summary()

#At	ibble: 13 x 3		
.m	netric	.estimator .e	stimate
<c< td=""><td>:hr></td><td><chr></chr></td><td><dbl></dbl></td></c<>	:hr>	<chr></chr>	<dbl></dbl>
1 ac	curacy	binary	0.759
2 ka	ıp	binary	0.466
3 se	ens	binary	0.617
4 sp	ec	binary	0.840
5 pp	١V	binary	0.685
6 np	١V	binary	0.795
7 mc	c	binary	0.468
8 j_	index	binary	0.456
9 ba	l_accuracy	binary	0.728
10 de	etection_prevalence	binary	0.325
11 pr	recision	binary	0.685
12 re	ecall	binary	0.617
13 f_	meas	binary	0.649

Let's practice! MODELING WITH TIDYMODELS IN R

Visualizing model performance

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Plotting the confusion matrix

Heatmap with autoplot()

- Pass confusion matrix object into autoplot()
- Set type to 'heatmap'
- Visualize the most prevalent counts

```
conf_mat(leads_results,
         truth = purchased,
         estimate = .pred_class) %>%
  autoplot(type = 'heatmap')
```

ves -	74
Predi	
no -	46
110	40
	yes

Mosaic plot

Mosaic with autoplot()

- Set type to 'mosaic'
- Each vertical bar represents 100% of actual outcome value in column
- Visually displays
 - sensitivity

```
conf_mat(leads_results,
         truth = purchased,
         estimate = .pred_class) %>%
 autoplot(type = 'mosaic')
```

yes-	
Predicted	
no -	
	yes

Mosiac plot

Mosaic with autoplot()

- Set type to 'mosaic'
- Each vertical bar represents 100% of actual outcome value in column
- Visually displays
 - sensitivity
 - specificity 0

```
conf_mat(leads_results,
         truth = purchased,
         estimate = .pred_class) %>%
 autoplot(type = 'mosaic')
```

yes -	
no -	

Predicted

yes

MODELING WITH TIDYMODELS IN R

Truth

no

Probability thresholds

Default probability threshold in binary classification is 0.5

 If the estimated probability of the positive class is greater than or equal to 0.5, the positive class is predicted

leads_results

 If .pred_yes is greater than or equal to 0.5 then .pred_class is set to 'yes' by the predict() function in tidymodels

# #	A tibble: 3	332 x 4		
	purchased	.pred_class	.pred_yes	.pred_no
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	no	no	0.134	0.866
2	yes	yes	0.729	0.271
3	no	no	0.133	0.867
4	no	no	0.0916	0.908
5	yes	yes	0.598	0.402
6	no	no	0.128	0.872
7	yes	no	0.112	0.888
8	no	no	0.169	0.831
9	no	no	0.158	0.842
10	yes	yes	0.520	0.480
# .	with 32	22 more rows		

leads_results

Exploring performance across thresholds

How does a classification model perform across a range of thresholds?

- Unique probability thresholds in the .pred_yes column of the test dataset results
 - Calculate specificity and sensitivity for each

threshold	specificity
0	0
0.11	0.01
0.15	0.05
•••	•••
0.84	0.89
0.87	0.94
0.91	0.99
1	1

Visualizing performance across thresholds

Receiver operating characteristic (ROC) curve

Used to visualize performance across \bullet probability thresholds

• Sensitivity vs. (1 - specificity) across unique thresholds in test set results

MODELING WITH TIDYMODELS IN R

1 – Specificity (False Positive Rate)

Visualizing performance across thresholds

Receiver operating characteristic (ROC) curve

Used to visualize performance across probability thresholds

- Sensitivity vs (1 specificity) across unique thresholds in test set results
 - Proportion correct among actual 0 positives vs. proportion incorrect among actual negatives

ROC curves

Optimal performance is at the point (0, 1)

Ideally, a classification model produces \bullet points close to left upper edge across all thresholds

MODELING WITH TIDYMODELS IN R

1 – Specificity (False Positive Rate)

ROC curves

Optimal performance is at the point (0, 1)

Ideally, a classification model produces \bullet points close to left upper edge across all thresholds

Poor performance

- Sensitivity and (1 specificity) are equal across all thresholds
 - Corresponds to a classification model that predicts outcomes based on the result of randomly flipping a fair coin

Summarizing the ROC curve

The area under the ROC curve (ROC AUC) captures the ROC curve information of a classification model in a single number

Useful interpretation as a letter grade of classification performance

- A [0.9, 1]
- B [0.8, 0.9)
- C [0.7, 0.8)
- D [0.6, 0.7)
- F [0.5, 0.6)

Calculating performance across thresholds

The roc_curve() function

- Takes a results tibble as the first argument
- truth column with true outcome categories
- Column with estimated probabilities for the positive class
 - .pred_yes in leads_results tibble 0

 Returns a tibble with specificity and sensitivity for all unique thresholds in .pred_yes

leads_results %>% roc_curve(truth = purchased, .pred_yes)

# A t	# A tibble: 331 x 3				
.t	hreshold s	specificity	sensitivity		
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
1	-Inf	0	1		
2	0.0871	0	1		
3	0.0888	0.00472	1		
4	0.0893	0.00943	1		
5	0.0896	0.0142	1		
6	0.0902	0.0142	0.992		
7	0.0916	0.0142	0.983		
8	0.0944	0.0189	0.983		
#	with 323	more rows			

Plotting the ROC curve

Passing the results of roc_curve() to the autoplot() function returns an ROC curve plot

leads_results %>% roc_curve(truth = purchased, .pred_yes) %>% autoplot()

Calculating ROC AUC

The roc_auc() function from yardstick will calculate the ROC AUC

- Tibble of model results
- truth column
- Column with estimated probabilities for the positive class

roc_auc(leads_results, truth = purchased, .pred_yes)

#	A tibble:	1 x 3
	.metric	.estimator
	<chr></chr>	<chr></chr>
1	roc_auc	binary

.estimate <dbl> 0.763

Let's practice! MODELING WITH TIDYMODELS IN R

Automating the modeling workflow

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Streamlining the workflow

The last_fit() function

- Also accepts classification models
- Speeds up the modeling process
- Fits the model to the training data and produces predictions on the test dataset

leads_split <- initial_split(leads_df,</pre> strata = purchased)

logistic_model <- logistic_reg() %>% set_engine('glm') %>% set_mode('classification')

Similar to using fit(), the first steps include:

- Creating a data split object with rsample
- Specifying a model with parsnip

Fitting the model and collecting metrics

The last_fit() function

- parsnip model object
- Model formula
- Data split object

logistic_last_fit <- logistic_model %>% last_fit(purchased ~ total_visits + total_time, split = leads_split)

logistic_last_fit %>% collect_metrics()

The collect_metrics() function calculates metrics using the test dataset

Accuracy and ROC AUC by default

A tibble: 2×3 .estimator .estimate .metric <chr> <chr> <dbl> binary 1 accuracy 0.759binary 0.763 2 roc_auc

Collecting predictions

collect_predictions()

- Creates a tibble with all necessary columns for yardstick functions
- Actual and predicted outcomes with the test data
- Estimated probability columns for all outcome categories

last_fit_results <- logistic_last_fit %>% collect_predictions()

last_fit_results

# A tibble: 332 x 6						
id	.pred_yes	.pred_no	.row	.pred_class	purchased	
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<fct></fct>	<fct></fct>	
1 train/test spli	t 0.134	0.866	2	no	no	
2 train/test spli	t 0.729	0.271	17	yes	yes	
3 train/test spli	t 0.133	0.867	21	no	no	
4 train/test spli	t 0.0916	0.908	22	no	no	
5 train/test spli	t 0.598	0.402	24	yes	yes	
# with 327 mor	e rows					

Custom metric sets

The metric_set() function

accuracy(), sens(), and spec()

 Require truth and estimate arguments

- roc_auc()
 - Requires truth and column of estimated probabilities

The custom_metrics() function will need all three, with .pred_yes as the last argument custom_metrics <- metric_set(accuracy, sens,</pre>

custom_metrics	(last_f	it_I
	truth	= pı
	estima	te :
	.pred_	yes

#	A tibble:	: 4 x 3	
	.metric	.estimator	.e
	<chr></chr>	<chr></chr>	
1	accuracy	binary	
2	sens	binary	
3	spec	binary	
4	roc_auc	binary	

R datacamp

```
_set(accuracy, sens,
spec, roc_auc)
```

```
results,
urchased,
= .pred_class,
)
```


Let's practice! MODELING WITH TIDYMODELS IN R

