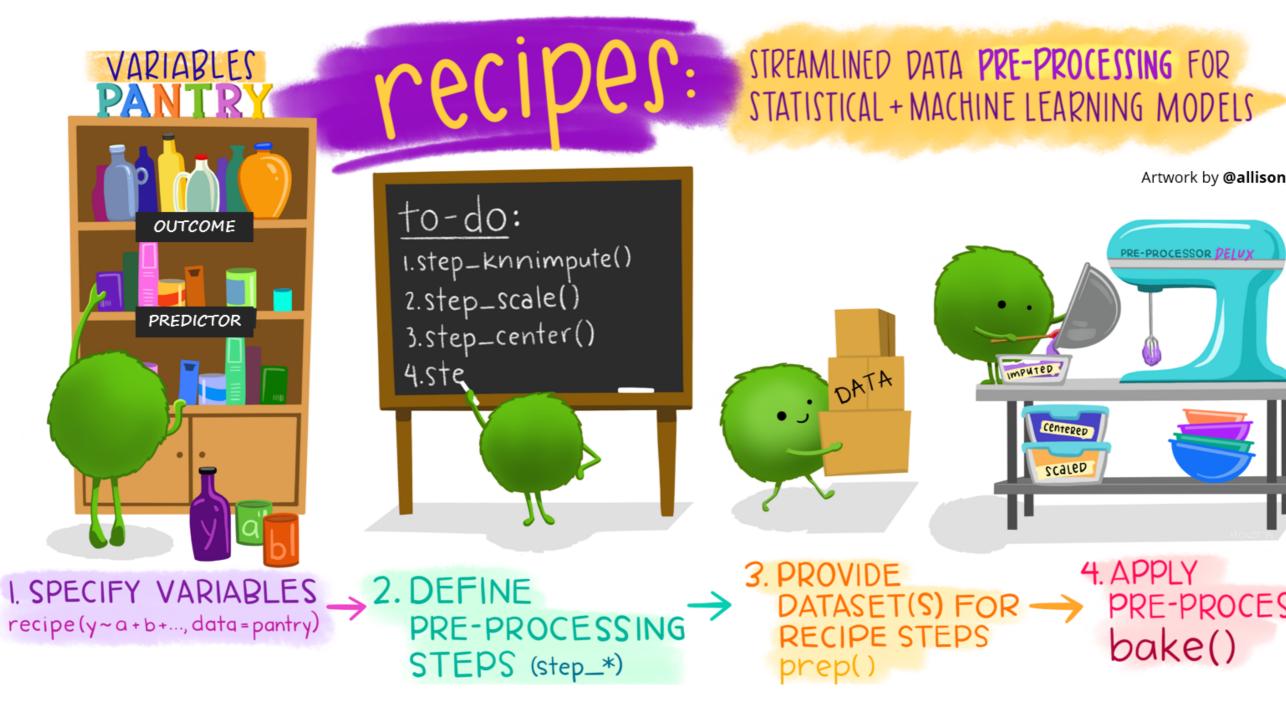
Feature engineering MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Feature engineering with the recipes package



atacamp

MODELING WITH TIDYMODELS IN R

Artwork by @allison_horst

Specifying variable types and roles

Define column roles

Assign outcome or predictor role to all \bullet variables

Determine variable data types

- Numeric data
- Categorical data

Accomplished with the recipe() function

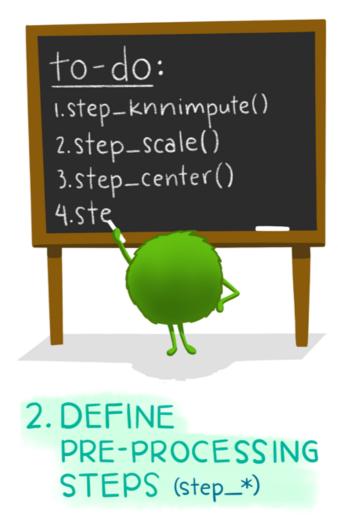
Artwork by @allison horst

Data preprocessing steps

Add required data preprocessing steps

- Imputation of missing data
- Data transformations
 - Centering and scaling numeric variables 0
- Creating new variables
 - Calculating ratios of variables 0
- And many more...

Each step is added with a unique step_*() function



¹ https://recipes.tidymodels.org/reference/index.html

Artwork by @allison horst

Training preprocessing steps

recipe objects are trained on a data source, typically the training dataset

- Data transformations are estimated
 - Mean and standard deviation of numeric 0 columns for centering and scaling
 - Formulas for creating new columns are 0 stored for applying to new data

Recipes are trained with the prep() function

3. PROVIDE

Artwork by @allison_horst

DATASET(S) FOR RECIPE STEPS

Applying recipes to new data

Apply all trained data preprocessing transformations

- To the training and test datasets for modeling
- To new sources of data for future predictions
 - Machine learning algorithms require the 0 same data format as was used during training to predict new values

Recipes are applied with the bake() function

PRE-PROCESSOR DE

PRE-PROCESSING bake()

Artwork by @allison_horst

Simple feature engineering pipeline

Log transform total_time in lead scoring data

- Common transformation for large data values \bullet
- Compresses the range of data values and reduces variability \bullet

leads_training

# A tibble: 9	96 x 7					
purchased	total_visits	total_time	pages_per_visit	total_clicks	lead_source	us_location
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>
1 yes	7	1148	7	59	direct_traffic	west
2 no	5	228	2.5	25	email	southeast
3 no	7	481	2.33	21	organic_search	west
4 no	4	177	4	37	direct_traffic	west
5 no	2	1273	2	26	email	midwest
# with 99	1 more rows					

Building a recipe object

The recipe() function

- Model formula
 - Assigns variable roles
- data argument
 - Determines variable data types 0

Pass recipe object to step_log() to add logarithm transformation step

Select variable for transformation, total_time, and specify logarithm base leads_log_rec <- recipe(purchased ~ .,</pre> step_log(total_time, base = 10)

leads_log_rec

Data Recipe	
Inputs:	
role #variabl	Les
outcome	1
predictor	6
Operations:	
Log transformation	on tota


```
data = leads_training) %>%
```

al_time

Explore variable roles and types

Passing a recipe object to the summary() function

- Creates a tibble with variable information
- type column
 - Captures data type of variable 0
 - 'nominal' represents categorical variables 0
- role column
 - Captures variable roles for modeling 0
 - Assigned based on input model formula 0

leads_log_rec %>% summary()

#	A tibble: 7 x 4	
	variable	type
	<chr></chr>	<chr></chr>
1	total_visits	numer
2	total_time	numer
3	pages_per_visit	numer
4	total_clicks	numer
5	lead_source	nomin
6	us_location	nomin
7	purchased	nomin

MODELING WITH TIDYMODELS IN R

outcome nal

- predictor nal
- predictor nal
- predictor ic
- predictor ic
- predictor ic
- predictor ic
- <chr>
- role

- original original original original original

- original

original

source

<chr>

Training a recipe object

The prep() function

- Takes a recipe object as the first argument
- training argument
 - Specifies the data on which to train data 0 preprocessing steps

Printing a trained recipe object

• Trained steps are indicated by [trained]

leads_log_rec_prep <- leads_log_rec %>% prep(training = leads_training)

leads_log_rec_prep

Data	Recipe	9	
Input	s:		
	role	#variables	
οι	utcome	1	
prec	lictor	6	

Training data contained 996 data points and no missing data.

Operations: Log transformation on total_time [trained]

Transforming the training data

The bake() function

- First argument is a trained recipe object
- new_data argument
 - Data on which to apply trained recipe 0
- Training data
 - leads_training was used to train the 0 recipe
 - By default, transformed data is retained 0 by prep() function
 - Pass NULL to new_data to extract 0
- Returns a tibble with transformed data

leads_log_rec_prep %>% bake(new_data = NULL)

# A	tibble:	996 x 7			
to	tal_vis:	its total_time	•••	us_location	purchased
	<dbl></dbl>	<dbl></dbl>	• • •	<fct></fct>	<fct></fct>
1	7	3.06	• • •	west	yes
2	5	2.36	•••	southeast	no
3	7	2.68	•••	west	no
4	4	2.25	•••	west	no
5	2	3.10	•••	midwest	no
#	. with 9	991 more rows			

Transforming new data

Transforming datasets not used during recipe training

- Pass dataset to new_data argument
- Trained recipe will apply all steps to new data sources

leads_log_rec_prep %>% bake(new_data = leads_test)

# A	# A tibble: 332 x 7					
tot	total_visits total_time		• • •	us_location	purchased	
	<dbl></dbl>	<dbl></dbl>	• • •	<fct></fct>	<fct></fct>	
1	8	2	• • •	west	no	
2	4	3.13	• • •	northeast	yes	
3	3	2.25	• • •	west	no	
4	2	1.20	• • •	midwest	no	
5	9	3.01	• • •	west	yes	
#	. with 327	more rows				

Let's get baking! MODELING WITH TIDYMODELS IN R

Numeric predictors

MODELING WITH TIDYMODELS IN R

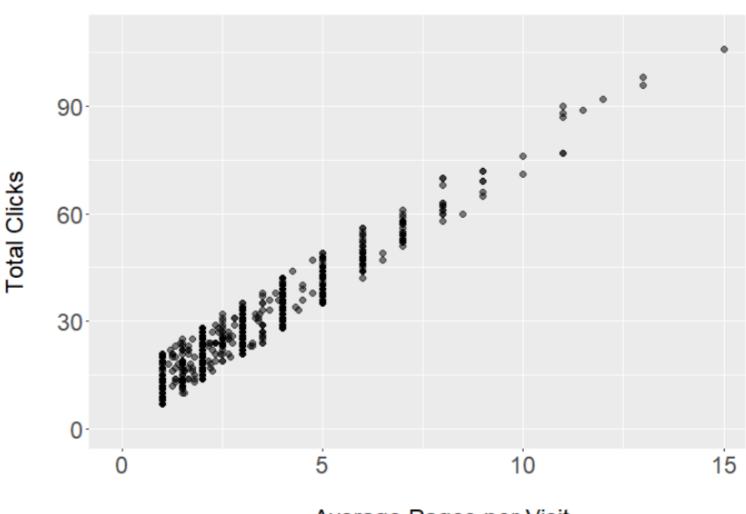
David Svancer Data Scientist

Correlated predictor variables

Correlation measures the strength of a linear relationship between two numeric variables

- Ranges from -1 to 1
- Highly correlated predictors near -1 or 1
 - Provide redundant information 0
 - Model fitting problems (*multicollinearity*) 0

```
ggplot(leads_training,
      aes(x = pages_per_visit, y = total_clicks)) +
 qeom_point() +
 labs(title = 'Total Clicks vs Average Page Visits',
      y = 'Total Clicks', x = 'Average Pages per Visit')
```

MODELING WITH TIDYMODELS IN R

Average Pages per Visit

Finding correlated predictor variables

Calculate a *correlation matrix*

- Pass dataset to select_if() function
 - Provide is.numeric as argument
- Pass to cor() function

leads_training %>% select_if(is.numeric) %>% cor()

	total_visits	total_time	pages_per_visit	total_clicks
total_visits	1.00	0.01	0.43	0.42
total_time	0.01	1.00	0.02	0.01
pages_per_visi	t 0.43	0.02	1.00	0.96
total_clicks	0.42	0.01	0.96	1.00

Processing correlated predictors

Removing multicollinearity with recipes

- Specify recipe object with recipe() function
- Pass to step_corr()
 - Add all numeric columns
 - Column names separated by commas
 - Provide correlation threshold
 - Absolute value
 - Threshold of 0.9 removes correlations at 0.9 or more and -0.9 or less

leads_cor_rec

Data Recipe	
Inputs:	
role #variables	
outcome 1	
predictor 6	
Operations:	
Correlation filter on	tota

MODELING WITH TIDYMODELS IN R

l_visits,..., total_clicks

Selecting predictors by type

- all_outcomes()
 - Selects the outcome variable
- all_numeric()
 - Selects all numeric variables 0
 - Will include the outcome variable if it is numeric
- To select numeric predictors for recipe steps
- Pass all_numeric() to step_*() functions
- If outcome variable is numeric, also pass -all_outcomes()

```
leads_cor_rec <- recipe(purchased ~ .,</pre>
  step_corr(all_numeric(), threshold = 0.9)
```

leads_cor_rec

Data Recipe		
Inputs:		
role #varia	ables	
outcome	1	
predictor	6	
Operations:		
Correlation filte	er on	all

data = leads_training) %>%

_numeric()

Training and applying the recipe

- Train with prep()
 - Provide leads_training for training
- Apply with bake()
 - pages_per_visit removed from 0 leads_test
 - pages_per_visit will be removed from 0 all future data as well

leads_cor_rec %>% prep(training = leads_training) %>% bake(new_data = leads_test)

# A	tibble	: 332 x 6			
tot	al_visi	ts total_time t	otal_clicks	• • •	purchased
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	• • •	<fct></fct>
1	8	100	24	• • •	no
2	4	1346	22	• • •	yes
3	3	176	27	• • •	no
4	2	16	12	• • •	no
5	9	1022	12	• • •	yes
#.	with	327 more rows			

Normalization

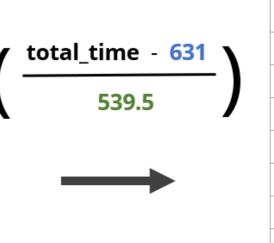
Centering and scaling numeric variables

- Subtract the mean
- Divide by the standard deviation \bullet
- Transforms data to standard deviation units
 - Transformed variable will have a mean of 0 O and standard deviation of 1

The total_time variable in leads_training

Spending 1,273 seconds on the website is 1.19 standard deviations greater than the average time spent by customers

total_time	
1148	
228	
481	
177	
1273	
711	



total_time_norm
0.96
-0.75
-0.28
-0.84
1.19
0.15

Combining data preprocessing steps

Normalizing numeric predictors with recipes

- step_normalize()
 - Column names or all_numeric()
 selector
 - Means and standard deviations from training data columns applied to new data sources
- Multiple step_*() functions can be added to
 a recipe
- Order matters

leads_norm_rec

Data Recipe	
Inputs:	
role #variables	
outcome 1	
predictor 6	
Operations:	
Correlation filter on	all_
Centering and scaling	for

MODELING WITH TIDYMODELS IN R

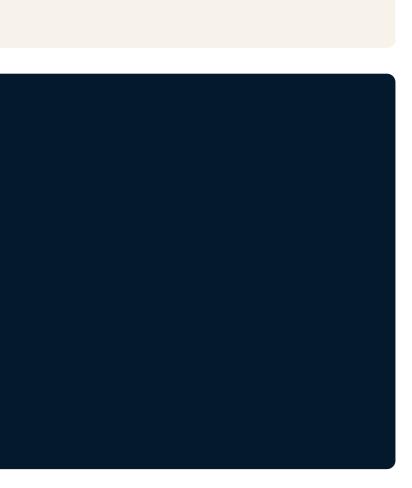
numeric() all_numeric()

Transforming the test data

pages_per_vist is removed and numeric predictors are normalized

leads_norm_rec %>%
 prep(training = leads_training) %>%
 bake(new_data = leads_test)

# A	tibble: 33	2 x 6				
tot	al_visits	total_time	total_clicks	lead_source us	_location	purchased
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>
1	0.864	-0.984	-0.360	direct_traffic	west	no
2	-0.151	1.33	-0.506	direct_traffic	northeast	yes
3	-0.405	-0.843	-0.140	organic_search	west	no
4	-0.659	-1.14	-1.24	email	midwest	no
5	1.12	0.725	-1.24	direct_traffic	west	yes
#	. with 327	more rows				



Let's practice! MODELING WITH TIDYMODELS IN R

Nominal predictors

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Nominal data

Data that encodes characteristics or groups

No meaningful order

Examples

- Department within a company • Marketing, Finance, Technology
- Native language
 - English, Czech, Spanish ...
- Car type
 - SUV, sedan, compact ...

Transforming nominal predictors

Nominal data must be transformed to numeric data for modeling

One-Hot Encoding

- Maps categorical values to a sequence of [0/1] indicator variables \bullet
- Indicator variable for each unique value in original data

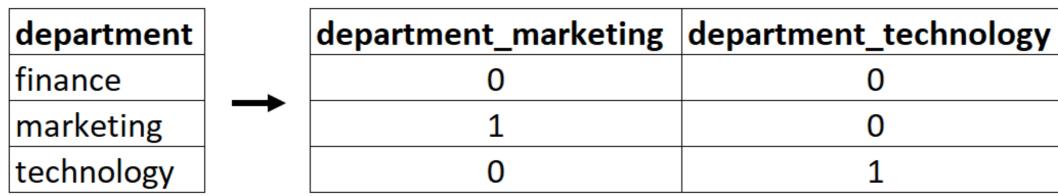
department	department_finance	department_marketing	departr
finance	 1	0	
marketing	0	1	
technology	0	0	

ment_technology 0 0

Transforming nominal predictors

Dummy Variable Encoding

- Excludes one value from original set of data values \bullet
 - *n* distinct values produce (*n* 1) indicator variables 0
- Preferred method for modeling \bullet
 - Default in recipes package 0



Lead scoring data

Nominal predictor variables - lead_source and us_location

leads_training

# A tibble: 996 x 7						
purchased	total_visits	total_time	pages_per_visit	total_clicks	lead_source	us_location
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>
1 yes	7	1148	7	59	direct_traffic	c west
2 no	5	228	2.5	25	email	southeast
3 no	7	481	2.33	21	organic_search	n west
4 no	4	177	4	37	direct_traffic	c west
5 no	2	1273	2	26	email	midwest
# with	991 more rows	6				

R datacamp

Creating dummy variables

The step_dummy() function

• Creates dummy variables from nominal predictor variables

```
recipe(purchased ~ ., data = leads_training) %>%
  step_dummy(lead_source, us_location) %>%
  prep(training = leads_training) %>%
  bake(new_data = leads_test)
```

		5			lead_source_direct_traffic		
	<dbl></dbl>	•••	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	8	•••	0	0	1	0	1
2	4	•••	0	0	1	0	Θ
3	3	•••	0	1	0	0	1
4	2	•••	1	0	Θ	0	Θ
5	9	•••	0	0	1	0	1

R datacamp

Selecting columns by type

Selecting by column type using all_nominal() and all_outcomes() selectors

-all_outcomes() excludes the nominal outcome variable, purchased

```
recipe(purchased ~ ., data = leads_training) %>%
  step_dummy(all_nominal(), -all_outcomes()) %>%
```

-	rep(trainin nke(new_dat	_	s_training) %>%			
		.u – .cuu	5_10517			
	tibble: 33					
t	otal_visit	:s le	ad_source_email	lead_source_organic_search	lead_source_direct_	traffic us_location_west
	<dbl></dbl>	• • •	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	8	•••	0	0	1	1
	4	•••	0	Θ	1	0
	3	• • •	0	1	Θ	1
	2	• • •	1	0	Θ	0
	9	• • •	Ο	0	1	1
••	. with 327	more ro	WS			

Preprocessing nominal predictor variables

Modeling engines in R

- Many include automatic dummy variable creation \bullet
 - Possible to use nominal predictors without preprocessing with step_dummy() 0
- Not consistent across all engines
 - One-hot vs dummy variables 0
 - Naming of new variables 0

The recipes package provides a standardized way to prepare nominal predictors for modeling

Let's practice! MODELING WITH TIDYMODELS IN R

Complete modeling workflow

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Data resampling

Creating training and test datasets

- initial_split()
 - Create data split object
- training()
 - Build training dataset 0
- testing()
 - Build test dataset 0

leads_split <- initial_split(leads_df,</pre> strata = purchased)

leads_training <- leads_split %>% training()

leads_test <- leads_split %>% testing()

Model specification

Specify model with parsnip

- logistic_reg()
 - General interface to logistic regression 0 models
- set_engine() • 'glm' engine
- set_mode()
 - purchased is a nominal outcome 0 variable
 - Mode should be 'classification' 0

logistic_model <- logistic_reg() %>% set_engine('glm') %>% set_mode('classification')

Logistic Regression Model Specification (classification)

Computational engine: glm

Feature engineering

Specify feature engineering steps with recipes

recipe()

> Model formula and training data 0

- step_*() functions
 - Sequential preprocessing steps 0

```
leads_recipe <- recipe(purchased ~ .,</pre>
                        data = leads_training) %>%
  step_corr(all_numeric(), threshold = 0.9) %>%
  step_normalize(all_numeric()) %>%
  step_dummy(all_nominal(), -all_outcomes())
```

leads_recipe

Data Recipe				
Inputs:				
role	#variables			
outcome	1			
predictor	6			

Operations:

Correlation filter on all_numeric() Centering and scaling for all_numeric() Dummy variables from all_nominal(), -all_outcomes()

Recipe training

Train feature engineering steps on the training data

- prep()
 - Pass recipe object to prep() 0
 - Add leads_training for training data 0

```
leads_recipe_prep <- leads_recipe %>%
  prep(training = leads_training)
```

leads_recipe_prep

Data Recipe Inputs: role #variables outcome 1 predictor 6 Training data contained 996 data points and no missing data.

Operations:

Correlation filter removed pages_per_visit [trained] Centering and scaling for total_visits ... [trained] Dummy variables from lead_source, us_location [trained]

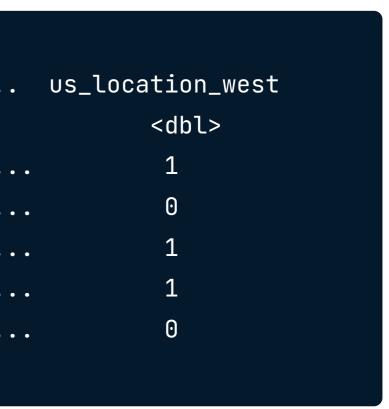
Preprocess training data

Apply trained recipe to the training data and save the results for modeling fitting

leads_training_prep <- leads_recipe_prep %>% bake(new_data = NULL)

leads_training_prep

# A	tibble: 9	96 x 11				
tota	al_visits	total_time	lea	d_source_email	lead_source_organic_search	•••
	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<dbl></dbl>	
1	0.611	0.958	• • •	0	Θ	
2	0.103	-0.747	• • •	1	Θ	
3	0.611	-0.278	•••	0	1	
4	-0.151	-0.842	• • •	0	Θ	•
5	-0.659	1.19	•••	1	Ο	•
#	. with 99	1 more rows				



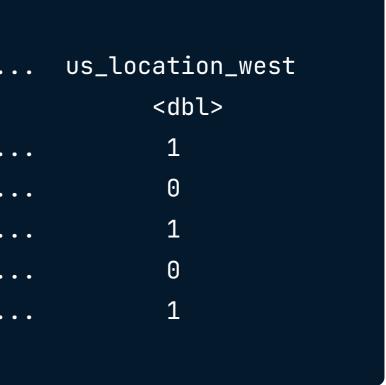
Preprocess test data

Apply trained recipe to the test data and save the results for modeling evaluation

leads_test_prep <- leads_recipe_prep %>% bake(new_data = leads_test)

leads_test_prep

# A	tibble: 33	2 x 11				
to	tal_visits	total_time	•••	lead_source_email	lead_source_organic_search	•
	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<dbl></dbl>	
1	0.864	-0.984	•••	Ο	0	•
2	-0.151	1.33	•••	Ο	0	•
3	-0.405	-0.843	•••	Ο	1	•
4	-0.659	-1.14	•••	1	0	•
5	1.12	0.725	•••	Ο	0	•
#.	with 327	more rows				



MODELING WITH TIDYMODELS IN R

Model fitting and predictions

Train logistic regression model with fit()

Use the **preprocessed training dataset**, leads_training_prep

Obtain model predictions with predict()

- Predict outcome values and estimated probabilities
- Use the **preprocessed test dataset**, leads_test_prep

```
logistic_fit <- logistic_model %>%
 fit(purchased ~ .,
      data = leads_training_prep)
```

class_preds <- predict(logistic_fit,</pre>

prob_preds <- predict(logistic_fit,</pre>

```
new_data = leads_test_prep,
 type = 'class')
new_data = leads_test_prep,
type = 'prob')
```

Combining prediction results

Combine predictions into a results dataset for yardstick metric functions

- Select the actual outcome variable, purchased from the test dataset
- Bind the predictions with bind_cols() \bullet

leads_results <-	- leads_t
select(purchas	sed) %>%
bind_cols(clas	ss_preds,

leads_results

# A tibble: 332 x 4					
purchase	d .pred_class	.pred_yes	.pred_no		
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>		
1 no	no	0.257	0.743		
2 yes	yes	0.896	0.104		
3 no	no	0.0852	0.915		
4 no	no	0.183	0.817		
5 yes	yes	0.776	0.224		
# with	327 more rows				

test %>%

prob_preds)

Model evaluation

Evaluate model performance with yardstick

- The results data can be used with all yardstick metric functions for model evaluation
- Confusion matrix, sensitivity, specificity, and other metrics

leads_results %>% conf_mat(truth = purchased,

Truth					
Prediction	yes	no			
yes	77	34			
no	43	178			

MODELING WITH TIDYMODELS IN R

estimate = .pred_class)

Let's practice! MODELING WITH TIDYMODELS IN R

