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Classification with decision trees
Decision trees segment the predictor space

into rectangular regions

Recursive binary spli�ing

Algorithm that segments predictor space

into non-overlapping rectangular regions

Decision splits are added iteratively

Either horizontal or vertical cut points

 

Produces distinct rectangular regions

For classi�cation, majority class is
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Tree diagrams
Interior nodes

Decision tree splits (dark boxes)

Terminal nodes

Regions which are not split further

Green and purple boxes

Interior nodes are dashed lines and terminal

nodes are highlighted rectangular regions
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Model specification
Model speci�cation in parsnip

decision_tree()
General interface to decision tree models

in parsnip

Common engine is 'rpart'

Mode can be either 'classification'
or 'regression'

For lead scoring data, we need 

'classification'

dt_model <- decision_tree() %>%   
  set_engine('rpart') %>% 
  set_mode('classification') 
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Feature engineering recipe
Data transformations for lead scoring data

Encoded in a recipe  object

Remove multicollinearity

Normalize numeric predictors

Create dummy variables for nominal

predictors

Two R objects to manage

parsnip  model and recipe  speci�cation

Combining into one object would make life

easier

leads_recipe 

Data Recipe 
Inputs: 
      role #variables 
   outcome          1 
 predictor          6 
 
Operations: 
Correlation filter on all_numeric() 
Centering and scaling for all_numeric() 
Dummy variables from all_nominal(), -all_outcomes() 

leads_recipe <- recipe(purchased ~ ., 
                       data = leads_training) %>%  
  step_corr(all_numeric(), threshold = 0.9) %>%  
  step_normalize(all_numeric()) %>%  
  step_dummy(all_nominal(), -all_outcomes()) 
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Combining models and recipes
The workflows  package is designed for

streamlining the model process

Combines a parsnip  model and recipe
object into a single workflow  object

 

Initialized with the workflow()  function

Add model object with add_model()

Add recipe  object with add_recipe()
Must be speci�cation, not a trained 

recipe

leads_wkfl <- workflow() %>%  
  add_model(dt_model) %>%  
  add_recipe(leads_recipe)  
 
leads_wkfl 

== Workflow ===================== 
Preprocessor: Recipe 
Model: decision_tree() 
-- Preprocessor ----------------- 
3 Recipe Steps 
* step_corr() 
* step_normalize() 
* step_dummy() 
-- Model -------------------------- 
Decision Tree Model Specification (classification) 
Computational engine: rpart 
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Model fitting with workflows
Training a workflow  object

Pass workflow  to last_fit()  and provide

data split object

View model evaluation results with 

collect_metrics()

Behind the scenes

Training and test datasets created

recipe  trained and applied

Decision tree trained with training data

Predictions and metrics on test data

leads_wkfl_fit <- leads_wkfl %>%  
  last_fit(split = leads_split)  
 
leads_wkfl_fit %>%  
  collect_metrics() 

# A tibble: 2 x 3 
  .metric  .estimator .estimate 
  <chr>    <chr>          <dbl> 
1 accuracy binary         0.771 
2 roc_auc  binary         0.775 
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Collecting predictions
A workflow  trained with last_fit()  can be

passed to collect_predictions()

Produces detailed results on the test data

Like before, can be used with yardstick
functions to explore performance custom

metrics

leads_wkfl_preds <- leads_wkfl_fit %>%  
  collect_predictions()  
 
leads_wkfl_preds 

# A tibble: 332 x 6 
   id          .pred_yes .pred_no  .row .pred_class purchased 
  <chr>           <dbl>   <dbl>    <int>   <fct>       <fct> 
train/test split  0.120    0.880     2      no          no 
train/test split  0.755    0.245    17      yes         yes 
train/test split  0.120    0.880    21      no          no 
train/test split  0.120    0.880    22      no          no 
train/test split  0.755    0.245    24      yes         yes 
# ... with 327 more rows 
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Exploring custom metrics
Create a custom metric set with 

metric_set()

Area under the ROC curve, sensitivity, and

speci�city

 

Pass predictions datasets to 

leads_metrics()  to calculate metrics

leads_metrics <- metric_set(roc_auc, sens, spec)  
 
leads_wkfl_preds %>%  
  leads_metrics(truth = purchased,  
                estimate = .pred_class,  
                .pred_yes) 
 

# A tibble: 3 x 3 
  .metric .estimator .estimate 
  <chr>   <chr>          <dbl> 
1 sens    binary         0.75  
2 spec    binary         0.783 
3 roc_auc binary         0.775 
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Loan default dataset
Financial data for consumer loans at a bank

Outcome variable is loan_default

 

loans_df 

# A tibble: 872 x 8 
loan_default  loan_purpose   missed_payment_2_yr loan_amount interest_rate installment annual_income debt_to_income 
 <fct>           <fct>            <fct>             <int>        <dbl>         <dbl>         <dbl>       <dbl> 
 no        debt_consolidation      no              25000         5.47          855.         62823        39.4  
 yes       medical                 no              10000        10.2           364.         40000        24.1  
 no        small_business          no              13000         6.22          442.         65000        14.0  
 no        small_business          no              36000         5.97         1152.        125000         8.09 
 yes       small_business          yes             12000        11.8           308.         65000        20.1  
# ... with 867 more rows 



Let's practice
building workflows!
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Training and test datasets
 

Creating training and test datasets is the �rst

step in the modeling process

Guards against over��ing

Training data is used for model ��ing

Test data is used for model evaluation

 

Downside

Only one estimate of model performance
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K-fold cross validation
Resampling technique for exploring model

performance

Provides K estimates of model performance

during the model ��ing process

Training data is randomly partitioned into K

sets of roughly equal size

Folds are used to perform K iterations of

model ��ing and evaluation
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Five iterations of model training and

evaluation
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Machine learning with cross validation
Performing 5-fold cross validation

Five iterations of model training and
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Iteration 2

Fold 2 reserved for model evaluation
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Machine learning with cross validation
Performing 5-fold cross validation

Five iterations of model training and

evaluation

Iteration 1

Fold 1 reserved for model evaluation and

folds 2 through 5 for model training

Iteration 2

Fold 2 reserved for model evaluation

 

Five estimates of model performance in total
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Creating cross validation folds
The vfold_cv()  function

Training data

Number of folds, v

Strati�cation variable, strata

Execute set.seed()  before vfold_cv()
for reproducibility

splits
List column with data split objects for

creating fold

set.seed(214) 
leads_folds <- vfold_cv(leads_training,  
                        v = 10,  
                        strata = purchased)  
leads_folds 

#  10-fold cross-validation using stratification  
# A tibble: 10 x 2 
   splits            id     
   <list>            <chr>  
 1 <split [896/100]> Fold01 
 2 <split [896/100]> Fold02 
 3 <split [896/100]> Fold03 
 . ................  ...... 
 9 <split [897/99]>  Fold09 
10 <split [897/99]>  Fold10 
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Model training with cross validation
The fit_resamples()  function

Train a parsnip  model or workflow  object

Provide cross validation folds, resamples

Optional custom metric function, metrics
Default is accuracy and ROC AUC

 

Each metric is estimated 10 times

One estimate per fold

Average value in mean  column

leads_rs_fit <- leads_wkfl %>%  
  fit_resamples(resamples = leads_folds,  
                metrics = leads_metrics)  
 
leads_rs_fit %>%  
  collect_metrics() 

# A tibble: 3 x 5 
  .metric .estimator  mean     n std_err 
  <chr>   <chr>      <dbl> <int>   <dbl> 
1 roc_auc binary     0.823    10  0.0147 
2 sens    binary     0.786    10  0.0203 
3 spec    binary     0.855    10  0.0159 
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Detailed cross validation results
The collect_metrics()  function

Passing summarize = FALSE  will provide all

metric estimates for every cross validation

fold

30 total combinations (3 metrics x 10 folds)

.metric  column identi�es metric

.estimate  column gives estimated

value for each fold

rs_metrics <- leads_rs_fit %>%  
  collect_metrics(summarize = FALSE)  
 
rs_metrics 

# A tibble: 30 x 4
   id     .metric .estimator .estimate 
   <chr>  <chr>   <chr>          <dbl> 
 1 Fold01 sens    binary         0.861 
 2 Fold01 spec    binary         0.891 
 3 Fold01 roc_auc binary         0.885 
 4 Fold02 sens    binary         0.778 
 5 Fold02 spec    binary         0.969 
 6 Fold02 roc_auc binary         0.885 
# ... with 24 more rows 
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Summarizing cross validation results
The collect_metrics()  function returns a

tibble

Results can be summarized with dplyr
Start with rs_metrics

Form groups by .metric  values

Calculate summary statistics with 

summarize()

rs_metrics %>%  
  group_by(.metric) %>%  
  summarize(min = min(.estimate), 
            median = median(.estimate), 
            max = max(.estimate), 
            mean = mean(.estimate), 
            sd = sd(.estimate)) 

# A tibble: 3 x 6 
 .metric   min  median   max   mean     sd 
  <chr>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl> 
1 roc_auc 0.758  0.806  0.885  0.823   0.0466 
2 sens    0.667  0.792  0.861  0.786   0.0642 
3 spec    0.810  0.843  0.969  0.855   0.0502 
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Cross validation methodology
Models trained with fit_resamples()  are

not able to provide predictions on new data

sources

predict()  function does not accept

resample objects

Purpose of fit_resample()

Explore and compare the performance

pro�le of di�erent model types

Select best performing model type and

focus on model ��ing e�orts

predict(leads_rs_fit, 
        new_data = leads_test) 
 

Error in UseMethod("predict") :  
  no applicable method for 'predict' applied to  
  an object of class  
  "c('resample_results',  
      'tune_results',   
      'tbl_df',  
      'tbl', 'data.frame')" 



Let's cross validate!
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Hyperparameters
Model parameters whose values are set prior

to model training and control model

complexity

parsnip  decision tree

cost_complexity
Penalizes large number of terminal nodes

tree_depth
Longest path from root to terminal node

min_n
Minimum data points required in a node

for further spli�ing
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Default hyperparameter values
decision_tree()  function sets default

hyperparameter values

cost_complexity  is set to 0.01

tree_depth  is set to 30

min_n  is set to 20

These may not be the best values for all

datasets

Hyperparameter tuning

Process of using cross validation to �nd

the optimal set of hyperparameter values

dt_model <- decision_tree() %>%  
  set_engine('rpart') %>%  
  set_mode('classification') 
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Labeling hyparameters for tuning
The tune()  function from the tune  package

To label hyperparameters for tuning, set

them equal to tune()  in parsnip  model

speci�cation

Creates model object with tuning

parameters

Will let other functions know that they

need to be optimized

Decision Tree Model Specification (classification) 
 
Main Arguments: 
  cost_complexity = tune() 
  tree_depth = tune() 
  min_n = tune() 
 
Computational engine: rpart 

dt_tune_model <- decision_tree(cost_complexity = tune(), 
                               tree_depth = tune(), 
                               min_n = tune()) %>%  
  set_engine('rpart') %>%  
  set_mode('classification') 
 
dt_tune_model 
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Creating a tuning workflow
workflow  objects can be easily updated

Prior leads_wkfl
Feature engineering steps for lead

scoring data and decision tree model

with default hyperparameters

Pass leads_wkfl  to update_model()  and

provide new decision tree model with

tuning parameters

leads_tune_wkfl <- leads_wkfl %>%   
  update_model(dt_tune_model)  
 
leads_tune_wkfl 

== Workflow =============== 
Preprocessor: Recipe 
Model: decision_tree() 
-- Preprocessor ----------- 
3 Recipe Steps 
* step_corr() 
* step_normalize() 
* step_dummy() 
-- Model ------------------ 
Decision Tree Model Specification (classification)
Main Arguments: cost_complexity = tune() 
                tree_depth = tune() 
                min_n = tune() 
Computational engine: rpart 
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Grid search
Most common method for tuning

hyperparameters

Generate a grid of unique combinations of

hyperparameter values

For each combination, use cross

validation to estimate model

performance

Choose best performing combination

 

cost_complexity tree_depth min_n

0.001 20 35

0.001 20 15

0.001 35 35

0.001 35 15

0.2 20 35

... ... ...
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Identifying hyperparameters
The parameters()  function from the dials
package

Takes a parsnip  model object

Returns a tibble with the hyperparameters

labeled by the tune()  function, if any

Used for generating tuning grids with the

dials  package

parameters(dt_tune_model) 

Collection of 3 parameters for tuning 
 
  identifier            type     object 
cost_complexity  cost_complexity nparam[+] 
tree_depth       tree_depth      nparam[+] 
min_n            min_n           nparam[+] 
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Random grid
Generating random combinations

This method tends to provide greater

chances of �nding optimal hyperparameter

values

The grid_random()  function

First argument is the results of the 

parameters()  function

size  sets the number of random

combinations to generate

Execute set.seed()  function before 

grid_random()  for reproducibility

set.seed(214) 
grid_random(parameters(dt_tune_model),  
            size = 5) 

# A tibble: 5 x 3 
  cost_complexity  tree_depth min_n 
            <dbl>      <int>  <int> 
1    0.0000000758        14     39 
2    0.0243               5     34 
3    0.00000443          11      8 
4    0.000000600          3      5 
5    0.00380              5     36 
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Saving a tuning grid
First step in hyperparameter tuning

Create and save a tuning grid

dt_grid  contains 5 random combinations

of hyperparameter values

set.seed(214) 
dt_grid <- grid_random(parameters(dt_tune_model), 
                       size = 5)  
 
dt_grid 

# A tibble: 5 x 3 
  cost_complexity  tree_depth min_n 
            <dbl>      <int>  <int> 
1    0.0000000758        14     39 
2    0.0243               5     34 
3    0.00000443          11      8 
4    0.000000600          3      5 
5    0.00380              5     36 
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Hyperparameter tuning with cross validation
The tune_grid()  function performs

hyperparameter tuning

Takes the following arguments:

workflow  or parsnip  model

Cross validation object, resamples

Tuning grid, grid

Optional metrics  function

Returns tibble of results

.metrics
List column with results for each fold

dt_tuning <- leads_tune_wkfl %>% 
             tune_grid(resamples = leads_folds,  
                       grid = dt_grid,  
                       metrics = leads_metrics) 

dt_tuning

# Tuning results 
# 10-fold cross-validation using stratification  
# A tibble: 10 x 4 
   splits             id       .metrics         .. 
   <list>            <chr>      <list>          .. 
<split [896/100]>   Fold01   <tibble [15 x 7]>  .. 
................    ......   ...............    .. 
<split [897/99]>    Fold09   <tibble [15 x 7]>  .. 
<split [897/99]>    Fold10   <tibble [15 x 7]>  .. 
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Exploring tuning results
The collect_metrics()  function provides summarized results by default

Average estimated metric values across all folds per combination

dt_tuning %>%  
  collect_metrics() 

# A tibble: 15 x 9 
   cost_complexity tree_depth min_n .metric .estimator  mean     n std_err .config 
             <dbl>      <int> <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>   
 1    0.0000000758         14    39 roc_auc binary     0.827    10 0.0147  Model1  
 2    0.0000000758         14    39 sens    binary     0.728    10 0.0277  Model1  
 3    0.0000000758         14    39 spec    binary     0.865    10 0.0156  Model1  
 4    0.0243                5    34 roc_auc binary     0.823    10 0.0147  Model2  
 .    ......               ..    .. ....    ......     .....    .. .....   ...... 
14    0.00380               5    36 sens    binary     0.747    10 0.0209  Model5  
15    0.00380               5    36 spec    binary     0.858    10 0.0161  Model5 



Let's get tuning!
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Detailed tuning results
The collect_metrics()  function provides summarized results by default

Passing summarize = FALSE  will provide all hyperparameter tuning results

dt_tuning %>%  
  collect_metrics(summarize = FALSE)

# A tibble: 150 x 8 
 id     cost_complexity tree_depth min_n .metric  ...  .estimate  .config 
<chr>        <dbl>         <int>   <int>  <chr>   ...    <dbl>      <chr>   
Fold01    0.0000000758     14       39    sens    ...     0.75     Model1  
Fold01    0.0000000758     14       39    spec    ...     0.906    Model1  
Fold01    0.0000000758     14       39    roc_auc ...     0.888    Model1  
.....     ............     ..       ..    ......  ...     .....    ...... 
Fold10    0.00380          5        36    roc_auc ...     0.789    Model5 
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Exploring tuning results
Selecting summarise = FALSE  within 

collect_metrics()  returns a tibble

Easy to explore results with dplyr

Exploring ROC AUC

Select roc_auc  metric

Form groups by id  column

Calculate .estimate  summary statistics

dt_tuning %>%  
  collect_metrics(summarize = FALSE) %>%   
  filter(.metric == 'roc_auc') %>%  
  group_by(id) %>%  
  summarize(min_roc_auc = min(.estimate), 
            median_roc_auc = median(.estimate), 
            max_roc_auc = max(.estimate)) 

# A tibble: 10 x 4 
 id     min_roc_auc  median_roc_auc  max_roc_auc 
<chr>      <dbl>          <dbl>       <dbl> 
Fold01     0.830          0.885       0.888 
Fold02     0.857          0.882       0.885 
Fold03     0.818          0.836       0.836 
......     ....           ....        .... 
Fold10     0.762          0.790       0.813 
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Viewing the best performing models
The show_best()  function

Displays the top n  performing models based on average value of metric

Model1  is the winner

dt_tuning %>%  
  show_best(metric = 'roc_auc', n = 5) 

# A tibble: 5 x 9 
cost_complexity  tree_depth  min_n  .metric .estimator   mean    n    std_err  .config 
    <dbl>           <int>    <int>    <chr>   <chr>      <dbl>  <int>  <dbl>    <chr> 
0.0000000758         14       39     roc_auc  binary     0.827   10   0.0147   Model1  
0.00380               5       36     roc_auc  binary     0.825   10   0.0146   Model5  
0.0243                5       34     roc_auc  binary     0.823   10   0.0147   Model2  
0.00000443           11       8      roc_auc  binary     0.816   10   0.00786  Model3  
0.000000600           3       5      roc_auc  binary     0.814   10   0.0131   Model4 
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Selecting a model
The select_best()  function

Pass dt_tuning  results to select_best()

Select the metric  on which to evaluate

performance

 

Returns a tibble with the best performing

model and hyperparameter values

best_dt_model <- dt_tuning %>%  
  select_best(metric = 'roc_auc')  
 
best_dt_model 

 

# A tibble: 1 x 4 
cost_complexity tree_depth  min_n  .config 
     <dbl>         <int>    <int>   <chr>   
0.0000000758        14       39     Model1 
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Finalizing the workflow
The finalize_workflow()  function will

�nalize a workflow  that contains a model

object with tuning parameters

Pass workflow  object

A tibble with one row of �nal model

hyperparameter values

Column names must match

hyperparameters in model object

 

Returns a workflow  object with set

hyperparameter values

final_leads_wkfl <- leads_tune_wkfl %>%  
  finalize_workflow(best_dt_model)  
final_leads_wkfl 

== Workflow ======================================== 
Preprocessor: Recipe 
Model: decision_tree() 
-- Preprocessor ------------------------------------ 
3 Recipe Steps 
* step_corr() 
* step_normalize() 
* step_dummy() 
-- Model -------------------------------------------- 
Decision Tree Model Specification (classification)
Main Arguments: 
  cost_complexity = 0.0000000758 
  tree_depth = 14 
  min_n = 39 
Computational engine: rpart 
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Model fitting
Finalized workflow  object can be trained

with last_fit()  and original data split

object, leads_split

 

Behind the scenes

Training and test datasets created

recipe  trained and applied

Tuned decision tree trained with entire

training dataset

Predictions and metrics on test data

 

# A tibble: 2 x 3 
  .metric  .estimator .estimate 
  <chr>    <chr>          <dbl> 
1 accuracy binary         0.771 
2 roc_auc  binary         0.793 

leads_final_fit <- final_leads_wkfl %>%  
  last_fit(split = leads_split) 
 
leads_final_fit %>%  
  collect_metrics() 



Let's practice!
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The tidymodels ecosystem
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Regression modeling
Specifying models with parsnip

 

Training and evaluating linear regression

models
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Classification modeling
Logistic regression with logistic_reg()

 

Evaluating classi�cation performance with

confusion matrices and ROC curves
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Feature engineering
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Fine tuning models with cross validation
Model performance pro�les with cross

validation and fit_resamples()

 

Hyperparameter tuning with grid search

Finalizing model work�ows

 

cost_complexity tree_depth min_n

0.001 20 35

0.001 20 15

0.001 35 35

0.001 35 15

0.2 20 35

... ... ...



Thank you!
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