Machine learning workflows

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

Algorithm that segments predictor space into non-overlapping rectangular regions

Time on Website vs Total Visits by Purchase Outcome

Total Time on Website

Total Website Visits

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively ${}^{\bullet}$
 - Either horizontal or vertical cut points 0

Total Time on Website

Time on Website vs Total Visits

Total Website Visits

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively
 - Either horizontal or vertical cut points

Total Time on Website

Total Website Visits

Time on Website vs Total Visits by Purchase Outcome

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively ${}^{\bullet}$
 - Either horizontal or vertical cut points 0

Time on Website vs Total Visits

by Purchase Outcome

Total Website Visits

Decision trees segment the predictor space into **rectangular** regions

Recursive binary splitting

- Algorithm that segments predictor space into non-overlapping rectangular regions
- Decision splits are added iteratively \bullet
 - Either horizontal or vertical cut points 0

Produces distinct rectangular regions

For classification, majority class is \bullet

Time on Website vs Total Visits

Total Time on Website

by Purchase Outcome

Total Website Visits

Tree diagrams

- Interior nodes
 - Decision tree splits (dark boxes)
- Terminal nodes
 - Regions which are not split further
 - Green and purple boxes

Interior nodes are dashed lines and terminal nodes are highlighted rectangular regions

Total Time on Website

Total Website Visits

R datacamp

MODELING WITH TIDYMODELS IN R

Time on Website vs Total Visits by Purchase Outcome

Model specification

Model specification in parsnip

- decision_tree()
 - General interface to decision tree models 0 in parsnip
 - Common engine is 'rpart' 0
 - Mode can be either 'classification' 0
 - or 'regression'
 - For lead scoring data, we need

'classification'

dt_model <- decision_tree() %>% set_engine('rpart') %>% set_mode('classification')

Feature engineering recipe

Data transformations for lead scoring data

- Encoded in a recipe object
 - Remove multicollinearity
 - Normalize numeric predictors
 - Create dummy variables for nominal predictors

Two R objects to manage

- parsnip model and recipe specification
- Combining into one object would make life easier

leads_recipe

Data Recipe	9
Inputs:	
role	#variables
outcome	1
predictor	6

Operations:

Correlation filter on all_numeric() Centering and scaling for all_numeric() Dummy variables from all_nominal(), -all_outcomes()

R datacamp

Combining models and recipes

The workflows package is designed for streamlining the model process

Combines a parsnip model and recipe object into a single workflow object

Initialized with the workflow() function

- Add model object with add_model() •
- Add recipe object with add_recipe()
 - Must be specification, not a trained 0 recipe

<pre>leads_wkfl <- workflow() %>% add_model(dt_model) %>% add_recipe(leads_recipe)</pre>
leads_wkfl
== Workflow ====================================
Prennocesson: Recine
Model: decision_tree()
Preprocessor
3 Recipe Steps
* step_corr()
<pre>* step_normalize()</pre>
<pre>* step_dummy()</pre>
Model
Decision Tree Model Specific
Computational engine: rpart

MODELING WITH TIDYMODELS IN R

ation (classification)

Model fitting with workflows

Training a workflow object

- Pass workflow to last_fit() and provide data split object
- View model evaluation results with collect_metrics()

Behind the scenes

- Training and test datasets created
- recipe trained and applied
- Decision tree trained with training data
- Predictions and metrics on test data

leads_wkfl_fit <- leads_wkfl %>%
 last_fit(split = leads_split)

leads_wkfl_fit %>%
 collect_metrics()

# /	A tibble:	2 x 3
	.metric	.estimator
ł	<chr></chr>	<chr></chr>
1 8	accuracy	binary
2	roc_auc	binary

MODELING WITH TIDYMODELS IN R

.estimate <dbl> 0.771 0.775

Collecting predictions

A workflow trained with last_fit() can be passed to collect_predictions()

- Produces detailed results on the test data
- Like before, can be used with yardstick \bullet functions to explore performance custom metrics

leads_wkfl_preds <- leads_wkfl_fit %>% collect_predictions()

leads_wkfl_preds

# A tibble: 332 x 6						
id	.p	red_yes	.pred_no	.row .	pred_class	purchased
<chr></chr>		<dbl></dbl>	<dbl></dbl>	<int></int>	<fct></fct>	<fct></fct>
train/test	split	0.120	0.880	2	no	no
train/test	split	0.755	0.245	17	yes	yes
train/test	split	0.120	0.880	21	no	no
train/test	split	0.120	0.880	22	no	no
train/test	split	0.755	0.245	24	yes	yes
# with	327 mo	re rows				

Exploring custom metrics

Create a custom metric set with metric_set()

• Area under the ROC curve, sensitivity, and specificity

Pass predictions datasets to leads_metrics() to calculate metrics leads_metrics <- metric_set(roc_auc, sens, spec)</pre>

```
leads_wkfl_preds %>%
 leads_metrics(truth = purchased,
                estimate = .pred_class,
                .pred_yes)
```

#	A tibble	e: 3 x 3	
	.metric	.estimator	.e
	<chr></chr>	<chr></chr>	
1	sens	binary	
2	spec	binary	
3	roc_auc	binary	

Loan default dataset

Financial data for consumer loans at a bank

• Outcome variable is loan_default

loans_df

# A tibble:	# A tibble: 872 x 8						
loan_defau	lt loan_purpose	missed_payment_2_yr	loan_amount	interest_rate	installment	annual_income	debt_to_income
<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
no	debt_consolidation	no no	25000	5.47	855.	62823	39.4
yes	medical	no	10000	10.2	364.	40000	24.1
no	small_business	no	13000	6.22	442.	65000	14.0
no	small_business	no	36000	5.97	1152.	125000	8.09
yes	small_business	yes	12000	11.8	308.	65000	20.1
# with	867 more rows						

R datacamp

Let's practice building workflows!

Estimating performance with cross validation

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Training and test datasets

Creating training and test datasets is the first step in the modeling process

- Guards against overfitting
 - Training data is used for model fitting 0
 - Test data is used for model evaluation 0

Downside

Only **one** estimate of model performance

Training data

K-fold cross validation

Resampling technique for exploring model performance

• Provides *K* estimates of model performance during the model fitting process

Training data

Test data

K-fold cross validation

Resampling technique for exploring model performance

- Provides *K* estimates of model performance during the model fitting process
- Training data is randomly partitioned into K sets of roughly equal size
- Folds are used to perform *K* iterations of model fitting and evaluation

MODELING WITH TIDYMODELS IN R

Training data

Cross Validation Folds

Performing 5-fold cross validation

• Five iterations of model training and evaluation

Cross Validation Folds

Performing 5-fold cross validation

- Five iterations of model training and evaluation
- Iteration 1
 - Fold 1 reserved for model evaluation and 0 folds 2 through 5 for model training

Performing 5-fold cross validation

- Five iterations of model training and evaluation
- Iteration 1
 - Fold 1 reserved for model evaluation and 0 folds 2 through 5 for model training
- Iteration 2
 - Fold 2 reserved for model evaluation 0

Model Training

Performance Evaluation

Model Training

Model Training

Model Training

Performing 5-fold cross validation

- Five iterations of model training and evaluation
- Iteration 1
 - Fold 1 reserved for model evaluation and folds 2 through 5 for model training
- Iteration 2
 - Fold 2 reserved for model evaluation

Five estimates of model performance in total

Creating cross validation folds

The vfold_cv() function

- Training data
- Number of folds, v
- Stratification variable, strata
- Execute set.seed() before vfold_cv() for reproducibility
- splits
 - **List column** with data split objects for 0 creating fold

set.seed(214) leads_folds <- vfold_cv(leads_training,</pre> leads_folds 10-fold cross-validation using stratification # A tibble: 10 x 2 splits id <list> <chr> 1 <split [896/100]> Fold01 2 <split [896/100]> Fold02 3 <split [896/100]> Fold03 9 <split [897/99]> Fold09 10 <split [897/99]> Fold10

- v = 10,
- strata = purchased)

Model training with cross validation

The fit_resamples() function

- Train a parsnip model or workflow object
- Provide cross validation folds, resamples
- Optional custom metric function, metrics • Default is accuracy and ROC AUC

Each metric is estimated 10 times

- One estimate per fold
- Average value in mean column

```
leads_rs_fit <- leads_wkfl %>%
 fit_resamples(resamples = leads_folds,
```

leads_rs_fit %>% collect_metrics()

#	A tibble	e: 3 x 5			
	.metric	.estimator	mean	n	std_err
	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>
1	roc_auc	binary	0.823	10	0.0147
2	sens	binary	0.786	10	0.0203
3	spec	binary	0.855	10	0.0159

- metrics = leads metrics)

Detailed cross validation results

The collect_metrics() function

- Passing summarize = FALSE will provide all metric estimates for every cross validation fold
- 30 total combinations (3 metrics x 10 folds)
 - .metric column identifies metric 0
 - .estimate column gives estimated 0 value for each fold

rs_metrics <- leads_rs_fit %>% collect_metrics(summarize = FALSE)

rs_metrics

# A tibble: 30 x 4						
id	.metric	.estimator	.estimate			
<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>			
1 Fold01	sens	binary	0.861			
2 Fold01	spec	binary	0.891			
3 Fold01	roc_auc	binary	0.885			
4 Fold02	sens	binary	0.778			
5 Fold02	spec	binary	0.969			
6 Fold02	roc_auc	binary	0.885			
# with	n 24 more	e rows				

Summarizing cross validation results

The collect_metrics() function returns a tibble

- Results can be summarized with dplyr
 - Start with rs_metrics
 - Form groups by .metric values 0
 - Calculate summary statistics with 0 summarize()

rs metrics %>% group_by(.metric) %>% summarize(min = min(.estimate), max = max(.estimate), mean = mean(.estimate), sd = sd(.estimate))

#	# A tibble: 3 x 6						
	.metric	min	median	max	mean	sd	
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	roc_auc	0.758	0.806	0.885	0.823	0.0466	
2	sens	0.667	0.792	0.861	0.786	0.0642	
3	spec	0.810	0.843	0.969	0.855	0.0502	

```
median = median(.estimate),
```

Cross validation methodology

Models trained with fit_resamples() are not able to provide predictions on new data sources

predict() function does not accept ${}^{\bullet}$ resample objects

Purpose of fit_resample()

- Explore and compare the performance profile of different model types
- Select best performing model type and focus on model fitting efforts

predict(leads_rs_fit, new_data = leads_test)

Error in UseMethod("predict") : an object of class "c('resample_results', 'tune_results', 'tbl_df', 'tbl', 'data.frame')"

Let's cross validate!

Hyperparameter tuning

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Hyperparameters

Model parameters whose values are set prior to model training and control model complexity

parsnip decision tree

- cost_complexity
 - Penalizes large number of terminal nodes
- tree_depth
 - Longest path from root to terminal node
- min_n
 - Minimum data points required in a node for further splitting

Default hyperparameter values

decision_tree() function sets default hyperparameter values

- cost_complexity is set to 0.01
- tree_depth is set to 30
- min_n is set to 20

These may not be the best values for all datasets

- Hyperparameter tuning
 - Process of using cross validation to find 0 the optimal set of hyperparameter values

dt_model <- decision_tree() %>% set_engine('rpart') %>% set_mode('classification')

Labeling hyparameters for tuning

The tune() function from the tune package

- To label hyperparameters for tuning, set them equal to tune() in parsnip model specification
- Creates model object with tuning parameters
 - Will let other functions know that they need to be optimized

set_engine('rpart') %>% set_mode('classification')

dt_tune_model

Decision Tree Model Specification (classification)

```
Main Arguments:
  cost_complexity = tune()
  tree_depth = tune()
  min_n = tune()
```

Computational engine: rpart

dt_tune_model <- decision_tree(cost_complexity = tune(),</pre> tree_depth = tune(), min_n = tune()) %>%

Creating a tuning workflow

workflow objects can be easily updated

- Prior leads_wkfl
 - Feature engineering steps for lead 0 scoring data and decision tree model with default hyperparameters
- Pass leads_wkfl to update_model() and provide new decision tree model with tuning parameters

leads_tune_wkfl <- leads_wkfl %>% update_model(dt_tune_model)

leads_tune_wkfl

== Workflow ===============
Preprocessor: Recipe
Model: decision_tree()
Preprocessor
3 Recipe Steps
* step_corr()
<pre>* step_normalize()</pre>
* step_dummy()
Model
Decision Tree Model Specificati
Main Arguments: cost_complexity
tree_depth = tu
<pre>min_n = tune()</pre>
Computational engine: rpart

MODELING WITH TIDYMODELS IN R

ion (classification) = tune() Jne()

Grid search

Most common method for tuning hyperparameters

- Generate a grid of unique combinations of hyperparameter values
 - For each combination, use cross validation to estimate model performance
- Choose best performing combination

cost_complexity	tree_depth	min_n
0.001	20	35
0.001	20	15
0.001	35	35
0.001	35	15
0.2	20	35
•••	•••	•••

Identifying hyperparameters

The parameters() function from the dials package

- Takes a parsnip model object
- Returns a tibble with the hyperparameters \bullet labeled by the tune() function, if any
 - Used for generating tuning grids with the dials package

parameters(dt_tune_model)

Collection	of	3	parame
identifie	er		
cost_comple	exi	ty	cost_
tree_depth			tree_
min_n			min_r

eters for tuning

object type _complexity nparam[+] nparam[+] _depth nparam[+]

Random grid

Generating random combinations

• This method tends to provide greater chances of finding optimal hyperparameter values

The grid_random() function

- First argument is the results of the parameters() function
- size sets the number of random combinations to generate
 - Execute set.seed() function before 0 grid_random() for reproducibility

set.seed(214) grid_random(parameters(dt_tune_model), size = 5)

#	A tibble: 5 x 3		
	cost_complexity	tree_depth	min_n
	<dbl></dbl>	<int></int>	<int></int>
1	0.000000758	14	39
2	0.0243	5	34
3	0.00000443	11	8
4	0.000000600	3	5
5	0.00380	5	36

Saving a tuning grid

First step in hyperparameter tuning

- Create and save a tuning grid
- dt_grid contains 5 random combinations of hyperparameter values

Se	et.seed(<mark>214</mark>)	
d1	_grid <- grid_ra	ndom(pa
		si
d1	_grid	
#	Λ tibble. 5 v 3	
π		
	cost_complexity	tree_d
	<dbl></dbl>	<i< td=""></i<>
1	0.000000758	
2	0.0243	
3	0.00000443	
4	0.00000600	
5	0.00380	

irameters(dt_tune_model), ze = 5)

depth	min_n
int>	<int></int>
14	39
5	34
11	8
3	5
5	36

Hyperparameter tuning with cross validation

The tune_grid() function performs hyperparameter tuning

Takes the following arguments:

- workflow or parsnip model
- Cross validation object, resamples
- Tuning grid, grid
- Optional metrics function

Returns tibble of results

- .metrics
 - List column with results for each fold 0


```
tune_grid(resamples = leads_folds,
          grid = dt_grid,
          metrics = leads metrics)
```


Exploring tuning results

The collect_metrics() function provides summarized results by default

• Average estimated metric values across all folds per combination

dt_	t_tuning %>%								
(collect_metrics())							
# /	# A tibble: 15 x 9								
	cost_complexity	tree_depth	min_n	.metric	.estimator	mean	n	std_err	.config
	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<chr></chr>
1	0.000000758	14	39	roc_auc	binary	0.827	10	0.0147	Model1
2	0.000000758	14	39	sens	binary	0.728	10	0.0277	Model1
3	0.000000758	14	39	spec	binary	0.865	10	0.0156	Model1
4	0.0243	5	34	roc_auc	binary	0.823	10	0.0147	Model2
•	••••	• •	••	• • • •	• • • • • •	••••	•••	• • • • •	• • • • • •
14	0.00380	5	36	sens	binary	0.747	10	0.0209	Model5
15	0.00380	5	36	spec	binary	0.858	10	0.0161	Model5

Let's get tuning! MODELING WITH TIDYMODELS IN R

Selecting the best model

MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

Detailed tuning results

The collect_metrics() function provides summarized results by default

• Passing summarize = FALSE will provide all hyperparameter tuning results

dt_tuning %>% collect_metrics(summarize = FALSE)

# A tib	# A tibble: 150 x 8								
id	cost_complexity	tree_depth	min_n	.metric	•••	.estimate	.config		
<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	•••	<dbl></dbl>	<chr></chr>		
Fold01	0.000000758	14	39	sens	• • •	0.75	Model1		
Fold01	0.000000758	14	39	spec	•••	0.906	Model1		
Fold01	0.000000758	14	39	roc_auc	•••	0.888	Model1		
••••	••••	••	••	••••	•••	••••	••••		
Fold10	0.00380	5	36	roc_auc	•••	0.789	Model5		

Exploring tuning results

Selecting summarise = FALSE within collect_metrics() returns a tibble

- Easy to explore results with dplyr
- Exploring ROC AUC
 - Select roc_auc metric 0
 - Form groups by id column 0
 - Calculate .estimate summary statistics 0

dt_tuning %>% collect_metrics(summarize = FALSE) %>% filter(.metric == 'roc_auc') %>% group_by(id) %>% summarize(min_roc_auc = min(.estimate),

# A tibble: 10 x 4							
id	min_roc_auc	median_roc_auc	max_roc_auc				
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>				
Fold01	0.830	0.885	0.888				
Fold02	0.857	0.882	0.885				
Fold03	0.818	0.836	0.836				
••••							
Fold10	0.762	0.790	0.813				

MODELING WITH TIDYMODELS IN R

median_roc_auc = median(.estimate), max_roc_auc = max(.estimate))

Viewing the best performing models

The show_best() function

- Displays the top n performing models based on average value of metric
- Model1 is the winner

```
dt_tuning %>%
  show_best(metric = 'roc_auc', n = 5)
```

# A tibble: 5 x 9							
cost_complexity	tree_depth	min_n	.metric .estimator	mean	n	std_err	.conf
<dbl></dbl>	<int></int>	<int></int>	<chr> <chr></chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<chr< td=""></chr<>
0.000000758	14	39	roc_auc binary	0.827	10	0.0147	Model
0.00380	5	36	roc_auc binary	0.825	10	0.0146	Model
0.0243	5	34	roc_auc binary	0.823	10	0.0147	Model
0.00000443	11	8	roc_auc binary	0.816	10	0.00786	Model
0.00000600	3	5	roc_auc binary	0.814	10	0.0131	Model

Selecting a model

The select_best() function

- Pass dt_tuning results to select_best()
- Select the metric on which to evaluate performance

best_dt_model <- dt_tuning %>% select_best(metric = 'roc_auc')

best_dt_model

Returns a tibble with the best performing model and hyperparameter values

A tibble: 1 x 4 cost_complexity tree_ <dbl> <i 0.000000758 14

depth	min_n	.config
nt>	<int></int>	<chr></chr>
, i	39	Model1

Finalizing the workflow

The finalize_workflow() function will finalize a workflow that contains a model object with tuning parameters

- Pass workflow object
- A tibble with one row of final model hyperparameter values
 - Column names must match 0 hyperparameters in model object

Returns a workflow object with set hyperparameter values

final leads wkfl <- leads tune wkfl %>% finalize_workflow(best_dt_model) final_leads_wkfl

== Workflow ====================================
Preprocessor: Recipe
Model: decision_tree()
Preprocessor
3 Recipe Steps
* step_corr()
<pre>* step_normalize()</pre>
* step_dummy()
Model
Decision Tree Model Specificat
Main Arguments:
cost_complexity = 0.00000007
tree_depth = 14
min_n = 39
Computational engine: rpart

Model fitting

Finalized workflow object can be trained with last_fit() and original data split object, leads_split

Behind the scenes

- Training and test datasets created
- recipe trained and applied
- **Tuned decision tree** trained with entire training dataset
- Predictions and metrics on test data

leads final fit <- final leads wkfl %>% last_fit(split = leads_split)

leads_final_fit %>% collect_metrics()

#	A tibble:	: 2 x 3	
	.metric	.estimator	•
	<chr></chr>	<chr></chr>	
1	accuracy	binary	
2	roc_auc	binary	

MODELING WITH TIDYMODELS IN R

estimate <dbl> 0.771 0.793

Let's practice! MODELING WITH TIDYMODELS IN R

Congratulations! MODELING WITH TIDYMODELS IN R

David Svancer Data Scientist

The tidymodels ecosystem

MODELING WITH TIDYMODELS IN R

Model tuning

Regression modeling

Specifying models with parsnip

tacamp

Training and evaluating linear regression models

Actual Highway MPG

Classification modeling

Logistic regression with logistic_reg()

Evaluating classification performance with confusion matrices and ROC curves

Feature engineering

datacamp

MODELING WITH TIDYMODELS IN R

PRE-PROCESSING.

Artwork by @allison_horst

Fine tuning models with cross validation

Model performance profiles with cross validation and fit_resamples()

- Hyperparameter tuning with grid search
- Finalizing model workflows

	Training data	Cross Validation Folds	cost_complexity	tree_depth	min_n
Original Data			0.001	20	35
	,		0.001	20	15
			0.001	35	35
	Test data		0.001	35	15
			0.2	20	35
			•••	•••	•••

Thank you! MODELING WITH TIDYMODELS IN R

