
Machine learning
workflows

MODEL ING WITH T IDYMODELS IN R

David Svancer

Data Scientist

MODELING WITH TIDYMODELS IN R

Classification with decision trees
Decision trees segment the predictor space

into rectangular regions

Recursive binary spli�ing

Algorithm that segments predictor space

into non-overlapping rectangular regions

MODELING WITH TIDYMODELS IN R

Classification with decision trees
Decision trees segment the predictor space

into rectangular regions

Recursive binary spli�ing

Algorithm that segments predictor space

into non-overlapping rectangular regions

Decision splits are added iteratively

Either horizontal or vertical cut points

MODELING WITH TIDYMODELS IN R

Classification with decision trees
Decision trees segment the predictor space

into rectangular regions

Recursive binary spli�ing

Algorithm that segments predictor space

into non-overlapping rectangular regions

Decision splits are added iteratively

Either horizontal or vertical cut points

MODELING WITH TIDYMODELS IN R

Classification with decision trees
Decision trees segment the predictor space

into rectangular regions

Recursive binary spli�ing

Algorithm that segments predictor space

into non-overlapping rectangular regions

Decision splits are added iteratively

Either horizontal or vertical cut points

MODELING WITH TIDYMODELS IN R

Classification with decision trees
Decision trees segment the predictor space

into rectangular regions

Recursive binary spli�ing

Algorithm that segments predictor space

into non-overlapping rectangular regions

Decision splits are added iteratively

Either horizontal or vertical cut points

Produces distinct rectangular regions

For classi�cation, majority class is

MODELING WITH TIDYMODELS IN R

Tree diagrams
Interior nodes

Decision tree splits (dark boxes)

Terminal nodes

Regions which are not split further

Green and purple boxes

Interior nodes are dashed lines and terminal

nodes are highlighted rectangular regions

MODELING WITH TIDYMODELS IN R

Model specification
Model speci�cation in parsnip

decision_tree()
General interface to decision tree models

in parsnip

Common engine is 'rpart'

Mode can be either 'classification'
or 'regression'

For lead scoring data, we need

'classification'

dt_model <- decision_tree() %>%
 set_engine('rpart') %>%
 set_mode('classification')

MODELING WITH TIDYMODELS IN R

Feature engineering recipe
Data transformations for lead scoring data

Encoded in a recipe object

Remove multicollinearity

Normalize numeric predictors

Create dummy variables for nominal

predictors

Two R objects to manage

parsnip model and recipe speci�cation

Combining into one object would make life

easier

leads_recipe

Data Recipe
Inputs:
 role #variables
 outcome 1
 predictor 6

Operations:
Correlation filter on all_numeric()
Centering and scaling for all_numeric()
Dummy variables from all_nominal(), -all_outcomes()

leads_recipe <- recipe(purchased ~ .,
 data = leads_training) %>%
 step_corr(all_numeric(), threshold = 0.9) %>%
 step_normalize(all_numeric()) %>%
 step_dummy(all_nominal(), -all_outcomes())

MODELING WITH TIDYMODELS IN R

Combining models and recipes
The workflows package is designed for

streamlining the model process

Combines a parsnip model and recipe
object into a single workflow object

Initialized with the workflow() function

Add model object with add_model()

Add recipe object with add_recipe()
Must be speci�cation, not a trained

recipe

leads_wkfl <- workflow() %>%
 add_model(dt_model) %>%
 add_recipe(leads_recipe)

leads_wkfl

== Workflow =====================
Preprocessor: Recipe
Model: decision_tree()
-- Preprocessor -----------------
3 Recipe Steps
* step_corr()
* step_normalize()
* step_dummy()
-- Model --------------------------
Decision Tree Model Specification (classification)
Computational engine: rpart

MODELING WITH TIDYMODELS IN R

Model fitting with workflows
Training a workflow object

Pass workflow to last_fit() and provide

data split object

View model evaluation results with

collect_metrics()

Behind the scenes

Training and test datasets created

recipe trained and applied

Decision tree trained with training data

Predictions and metrics on test data

leads_wkfl_fit <- leads_wkfl %>%
 last_fit(split = leads_split)

leads_wkfl_fit %>%
 collect_metrics()

A tibble: 2 x 3
 .metric .estimator .estimate
 <chr> <chr> <dbl>
1 accuracy binary 0.771
2 roc_auc binary 0.775

MODELING WITH TIDYMODELS IN R

Collecting predictions
A workflow trained with last_fit() can be

passed to collect_predictions()

Produces detailed results on the test data

Like before, can be used with yardstick
functions to explore performance custom

metrics

leads_wkfl_preds <- leads_wkfl_fit %>%
 collect_predictions()

leads_wkfl_preds

A tibble: 332 x 6
 id .pred_yes .pred_no .row .pred_class purchased
 <chr> <dbl> <dbl> <int> <fct> <fct>
train/test split 0.120 0.880 2 no no
train/test split 0.755 0.245 17 yes yes
train/test split 0.120 0.880 21 no no
train/test split 0.120 0.880 22 no no
train/test split 0.755 0.245 24 yes yes
... with 327 more rows

MODELING WITH TIDYMODELS IN R

Exploring custom metrics
Create a custom metric set with

metric_set()

Area under the ROC curve, sensitivity, and

speci�city

Pass predictions datasets to

leads_metrics() to calculate metrics

leads_metrics <- metric_set(roc_auc, sens, spec)

leads_wkfl_preds %>%
 leads_metrics(truth = purchased,
 estimate = .pred_class,
 .pred_yes)

A tibble: 3 x 3
 .metric .estimator .estimate
 <chr> <chr> <dbl>
1 sens binary 0.75
2 spec binary 0.783
3 roc_auc binary 0.775

MODELING WITH TIDYMODELS IN R

Loan default dataset
Financial data for consumer loans at a bank

Outcome variable is loan_default

loans_df

A tibble: 872 x 8
loan_default loan_purpose missed_payment_2_yr loan_amount interest_rate installment annual_income debt_to_income
 <fct> <fct> <fct> <int> <dbl> <dbl> <dbl> <dbl>
 no debt_consolidation no 25000 5.47 855. 62823 39.4
 yes medical no 10000 10.2 364. 40000 24.1
 no small_business no 13000 6.22 442. 65000 14.0
 no small_business no 36000 5.97 1152. 125000 8.09
 yes small_business yes 12000 11.8 308. 65000 20.1
... with 867 more rows

Let's practice
building workflows!

MODEL ING WITH T IDYMODELS IN R

Estimating
performance with
cross validation

MODEL ING WITH T IDYMODELS IN R

David Svancer

Data Scientist

MODELING WITH TIDYMODELS IN R

Training and test datasets

Creating training and test datasets is the �rst

step in the modeling process

Guards against over��ing

Training data is used for model ��ing

Test data is used for model evaluation

Downside

Only one estimate of model performance

MODELING WITH TIDYMODELS IN R

K-fold cross validation
Resampling technique for exploring model

performance

Provides K estimates of model performance

during the model ��ing process

MODELING WITH TIDYMODELS IN R

K-fold cross validation
Resampling technique for exploring model

performance

Provides K estimates of model performance

during the model ��ing process

Training data is randomly partitioned into K

sets of roughly equal size

Folds are used to perform K iterations of

model ��ing and evaluation

MODELING WITH TIDYMODELS IN R

Machine learning with cross validation
Performing 5-fold cross validation

Five iterations of model training and

evaluation

MODELING WITH TIDYMODELS IN R

Machine learning with cross validation
Performing 5-fold cross validation

Five iterations of model training and

evaluation

Iteration 1

Fold 1 reserved for model evaluation and

folds 2 through 5 for model training

MODELING WITH TIDYMODELS IN R

Machine learning with cross validation
Performing 5-fold cross validation

Five iterations of model training and

evaluation

Iteration 1

Fold 1 reserved for model evaluation and

folds 2 through 5 for model training

Iteration 2

Fold 2 reserved for model evaluation

MODELING WITH TIDYMODELS IN R

Machine learning with cross validation
Performing 5-fold cross validation

Five iterations of model training and

evaluation

Iteration 1

Fold 1 reserved for model evaluation and

folds 2 through 5 for model training

Iteration 2

Fold 2 reserved for model evaluation

Five estimates of model performance in total

MODELING WITH TIDYMODELS IN R

Creating cross validation folds
The vfold_cv() function

Training data

Number of folds, v

Strati�cation variable, strata

Execute set.seed() before vfold_cv()
for reproducibility

splits
List column with data split objects for

creating fold

set.seed(214)
leads_folds <- vfold_cv(leads_training,
 v = 10,
 strata = purchased)
leads_folds

10-fold cross-validation using stratification
A tibble: 10 x 2
 splits id
 <list> <chr>
 1 <split [896/100]> Fold01
 2 <split [896/100]> Fold02
 3 <split [896/100]> Fold03

 9 <split [897/99]> Fold09
10 <split [897/99]> Fold10

MODELING WITH TIDYMODELS IN R

Model training with cross validation
The fit_resamples() function

Train a parsnip model or workflow object

Provide cross validation folds, resamples

Optional custom metric function, metrics
Default is accuracy and ROC AUC

Each metric is estimated 10 times

One estimate per fold

Average value in mean column

leads_rs_fit <- leads_wkfl %>%
 fit_resamples(resamples = leads_folds,
 metrics = leads_metrics)

leads_rs_fit %>%
 collect_metrics()

A tibble: 3 x 5
 .metric .estimator mean n std_err
 <chr> <chr> <dbl> <int> <dbl>
1 roc_auc binary 0.823 10 0.0147
2 sens binary 0.786 10 0.0203
3 spec binary 0.855 10 0.0159

MODELING WITH TIDYMODELS IN R

Detailed cross validation results
The collect_metrics() function

Passing summarize = FALSE will provide all

metric estimates for every cross validation

fold

30 total combinations (3 metrics x 10 folds)

.metric column identi�es metric

.estimate column gives estimated

value for each fold

rs_metrics <- leads_rs_fit %>%
 collect_metrics(summarize = FALSE)

rs_metrics

A tibble: 30 x 4
 id .metric .estimator .estimate
 <chr> <chr> <chr> <dbl>
 1 Fold01 sens binary 0.861
 2 Fold01 spec binary 0.891
 3 Fold01 roc_auc binary 0.885
 4 Fold02 sens binary 0.778
 5 Fold02 spec binary 0.969
 6 Fold02 roc_auc binary 0.885
... with 24 more rows

MODELING WITH TIDYMODELS IN R

Summarizing cross validation results
The collect_metrics() function returns a

tibble

Results can be summarized with dplyr
Start with rs_metrics

Form groups by .metric values

Calculate summary statistics with

summarize()

rs_metrics %>%
 group_by(.metric) %>%
 summarize(min = min(.estimate),
 median = median(.estimate),
 max = max(.estimate),
 mean = mean(.estimate),
 sd = sd(.estimate))

A tibble: 3 x 6
 .metric min median max mean sd
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 roc_auc 0.758 0.806 0.885 0.823 0.0466
2 sens 0.667 0.792 0.861 0.786 0.0642
3 spec 0.810 0.843 0.969 0.855 0.0502

MODELING WITH TIDYMODELS IN R

Cross validation methodology
Models trained with fit_resamples() are

not able to provide predictions on new data

sources

predict() function does not accept

resample objects

Purpose of fit_resample()

Explore and compare the performance

pro�le of di�erent model types

Select best performing model type and

focus on model ��ing e�orts

predict(leads_rs_fit,
 new_data = leads_test)

Error in UseMethod("predict") :
 no applicable method for 'predict' applied to
 an object of class
 "c('resample_results',
 'tune_results',
 'tbl_df',
 'tbl', 'data.frame')"

Let's cross validate!
MODEL ING WITH T IDYMODELS IN R

Hyperparameter
tuning

MODEL ING WITH T IDYMODELS IN R

David Svancer

Data Scientist

MODELING WITH TIDYMODELS IN R

Hyperparameters
Model parameters whose values are set prior

to model training and control model

complexity

parsnip decision tree

cost_complexity
Penalizes large number of terminal nodes

tree_depth
Longest path from root to terminal node

min_n
Minimum data points required in a node

for further spli�ing

MODELING WITH TIDYMODELS IN R

Default hyperparameter values
decision_tree() function sets default

hyperparameter values

cost_complexity is set to 0.01

tree_depth is set to 30

min_n is set to 20

These may not be the best values for all

datasets

Hyperparameter tuning

Process of using cross validation to �nd

the optimal set of hyperparameter values

dt_model <- decision_tree() %>%
 set_engine('rpart') %>%
 set_mode('classification')

MODELING WITH TIDYMODELS IN R

Labeling hyparameters for tuning
The tune() function from the tune package

To label hyperparameters for tuning, set

them equal to tune() in parsnip model

speci�cation

Creates model object with tuning

parameters

Will let other functions know that they

need to be optimized

Decision Tree Model Specification (classification)

Main Arguments:
 cost_complexity = tune()
 tree_depth = tune()
 min_n = tune()

Computational engine: rpart

dt_tune_model <- decision_tree(cost_complexity = tune(),
 tree_depth = tune(),
 min_n = tune()) %>%
 set_engine('rpart') %>%
 set_mode('classification')

dt_tune_model

MODELING WITH TIDYMODELS IN R

Creating a tuning workflow
workflow objects can be easily updated

Prior leads_wkfl
Feature engineering steps for lead

scoring data and decision tree model

with default hyperparameters

Pass leads_wkfl to update_model() and

provide new decision tree model with

tuning parameters

leads_tune_wkfl <- leads_wkfl %>%
 update_model(dt_tune_model)

leads_tune_wkfl

== Workflow ===============
Preprocessor: Recipe
Model: decision_tree()
-- Preprocessor -----------
3 Recipe Steps
* step_corr()
* step_normalize()
* step_dummy()
-- Model ------------------
Decision Tree Model Specification (classification)
Main Arguments: cost_complexity = tune()
 tree_depth = tune()
 min_n = tune()
Computational engine: rpart

MODELING WITH TIDYMODELS IN R

Grid search
Most common method for tuning

hyperparameters

Generate a grid of unique combinations of

hyperparameter values

For each combination, use cross

validation to estimate model

performance

Choose best performing combination

cost_complexity tree_depth min_n

0.001 20 35

0.001 20 15

0.001 35 35

0.001 35 15

0.2 20 35

...

MODELING WITH TIDYMODELS IN R

Identifying hyperparameters
The parameters() function from the dials
package

Takes a parsnip model object

Returns a tibble with the hyperparameters

labeled by the tune() function, if any

Used for generating tuning grids with the

dials package

parameters(dt_tune_model)

Collection of 3 parameters for tuning

 identifier type object
cost_complexity cost_complexity nparam[+]
tree_depth tree_depth nparam[+]
min_n min_n nparam[+]

MODELING WITH TIDYMODELS IN R

Random grid
Generating random combinations

This method tends to provide greater

chances of �nding optimal hyperparameter

values

The grid_random() function

First argument is the results of the

parameters() function

size sets the number of random

combinations to generate

Execute set.seed() function before

grid_random() for reproducibility

set.seed(214)
grid_random(parameters(dt_tune_model),
 size = 5)

A tibble: 5 x 3
 cost_complexity tree_depth min_n
 <dbl> <int> <int>
1 0.0000000758 14 39
2 0.0243 5 34
3 0.00000443 11 8
4 0.000000600 3 5
5 0.00380 5 36

MODELING WITH TIDYMODELS IN R

Saving a tuning grid
First step in hyperparameter tuning

Create and save a tuning grid

dt_grid contains 5 random combinations

of hyperparameter values

set.seed(214)
dt_grid <- grid_random(parameters(dt_tune_model),
 size = 5)

dt_grid

A tibble: 5 x 3
 cost_complexity tree_depth min_n
 <dbl> <int> <int>
1 0.0000000758 14 39
2 0.0243 5 34
3 0.00000443 11 8
4 0.000000600 3 5
5 0.00380 5 36

MODELING WITH TIDYMODELS IN R

Hyperparameter tuning with cross validation
The tune_grid() function performs

hyperparameter tuning

Takes the following arguments:

workflow or parsnip model

Cross validation object, resamples

Tuning grid, grid

Optional metrics function

Returns tibble of results

.metrics
List column with results for each fold

dt_tuning <- leads_tune_wkfl %>%
 tune_grid(resamples = leads_folds,
 grid = dt_grid,
 metrics = leads_metrics)

dt_tuning

Tuning results
10-fold cross-validation using stratification
A tibble: 10 x 4
 splits id .metrics ..
 <list> <chr> <list> ..
<split [896/100]> Fold01 <tibble [15 x 7]> ..
................
<split [897/99]> Fold09 <tibble [15 x 7]> ..
<split [897/99]> Fold10 <tibble [15 x 7]> ..

MODELING WITH TIDYMODELS IN R

Exploring tuning results
The collect_metrics() function provides summarized results by default

Average estimated metric values across all folds per combination

dt_tuning %>%
 collect_metrics()

A tibble: 15 x 9
 cost_complexity tree_depth min_n .metric .estimator mean n std_err .config
 <dbl> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
 1 0.0000000758 14 39 roc_auc binary 0.827 10 0.0147 Model1
 2 0.0000000758 14 39 sens binary 0.728 10 0.0277 Model1
 3 0.0000000758 14 39 spec binary 0.865 10 0.0156 Model1
 4 0.0243 5 34 roc_auc binary 0.823 10 0.0147 Model2

14 0.00380 5 36 sens binary 0.747 10 0.0209 Model5
15 0.00380 5 36 spec binary 0.858 10 0.0161 Model5

Let's get tuning!
MODEL ING WITH T IDYMODELS IN R

Selecting the best
model

MODEL ING WITH T IDYMODELS IN R

David Svancer

Data Scientist

MODELING WITH TIDYMODELS IN R

Detailed tuning results
The collect_metrics() function provides summarized results by default

Passing summarize = FALSE will provide all hyperparameter tuning results

dt_tuning %>%
 collect_metrics(summarize = FALSE)

A tibble: 150 x 8
 id cost_complexity tree_depth min_n .metric estimate .config
<chr> <dbl> <int> <int> <chr> ... <dbl> <chr>
Fold01 0.0000000758 14 39 sens ... 0.75 Model1
Fold01 0.0000000758 14 39 spec ... 0.906 Model1
Fold01 0.0000000758 14 39 roc_auc ... 0.888 Model1
.....
Fold10 0.00380 5 36 roc_auc ... 0.789 Model5

MODELING WITH TIDYMODELS IN R

Exploring tuning results
Selecting summarise = FALSE within

collect_metrics() returns a tibble

Easy to explore results with dplyr

Exploring ROC AUC

Select roc_auc metric

Form groups by id column

Calculate .estimate summary statistics

dt_tuning %>%
 collect_metrics(summarize = FALSE) %>%
 filter(.metric == 'roc_auc') %>%
 group_by(id) %>%
 summarize(min_roc_auc = min(.estimate),
 median_roc_auc = median(.estimate),
 max_roc_auc = max(.estimate))

A tibble: 10 x 4
 id min_roc_auc median_roc_auc max_roc_auc
<chr> <dbl> <dbl> <dbl>
Fold01 0.830 0.885 0.888
Fold02 0.857 0.882 0.885
Fold03 0.818 0.836 0.836
......
Fold10 0.762 0.790 0.813

MODELING WITH TIDYMODELS IN R

Viewing the best performing models
The show_best() function

Displays the top n performing models based on average value of metric

Model1 is the winner

dt_tuning %>%
 show_best(metric = 'roc_auc', n = 5)

A tibble: 5 x 9
cost_complexity tree_depth min_n .metric .estimator mean n std_err .config
 <dbl> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
0.0000000758 14 39 roc_auc binary 0.827 10 0.0147 Model1
0.00380 5 36 roc_auc binary 0.825 10 0.0146 Model5
0.0243 5 34 roc_auc binary 0.823 10 0.0147 Model2
0.00000443 11 8 roc_auc binary 0.816 10 0.00786 Model3
0.000000600 3 5 roc_auc binary 0.814 10 0.0131 Model4

MODELING WITH TIDYMODELS IN R

Selecting a model
The select_best() function

Pass dt_tuning results to select_best()

Select the metric on which to evaluate

performance

Returns a tibble with the best performing

model and hyperparameter values

best_dt_model <- dt_tuning %>%
 select_best(metric = 'roc_auc')

best_dt_model

A tibble: 1 x 4
cost_complexity tree_depth min_n .config
 <dbl> <int> <int> <chr>
0.0000000758 14 39 Model1

MODELING WITH TIDYMODELS IN R

Finalizing the workflow
The finalize_workflow() function will

�nalize a workflow that contains a model

object with tuning parameters

Pass workflow object

A tibble with one row of �nal model

hyperparameter values

Column names must match

hyperparameters in model object

Returns a workflow object with set

hyperparameter values

final_leads_wkfl <- leads_tune_wkfl %>%
 finalize_workflow(best_dt_model)
final_leads_wkfl

== Workflow ==
Preprocessor: Recipe
Model: decision_tree()
-- Preprocessor ------------------------------------
3 Recipe Steps
* step_corr()
* step_normalize()
* step_dummy()
-- Model --
Decision Tree Model Specification (classification)
Main Arguments:
 cost_complexity = 0.0000000758
 tree_depth = 14
 min_n = 39
Computational engine: rpart

MODELING WITH TIDYMODELS IN R

Model fitting
Finalized workflow object can be trained

with last_fit() and original data split

object, leads_split

Behind the scenes

Training and test datasets created

recipe trained and applied

Tuned decision tree trained with entire

training dataset

Predictions and metrics on test data

A tibble: 2 x 3
 .metric .estimator .estimate
 <chr> <chr> <dbl>
1 accuracy binary 0.771
2 roc_auc binary 0.793

leads_final_fit <- final_leads_wkfl %>%
 last_fit(split = leads_split)

leads_final_fit %>%
 collect_metrics()

Let's practice!
MODEL ING WITH T IDYMODELS IN R

Congratulations!
MODEL ING WITH T IDYMODELS IN R

David Svancer

Data Scientist

MODELING WITH TIDYMODELS IN R

The tidymodels ecosystem

MODELING WITH TIDYMODELS IN R

Regression modeling
Specifying models with parsnip

Training and evaluating linear regression

models

MODELING WITH TIDYMODELS IN R

Classification modeling
Logistic regression with logistic_reg()

Evaluating classi�cation performance with

confusion matrices and ROC curves

MODELING WITH TIDYMODELS IN R

Feature engineering

MODELING WITH TIDYMODELS IN R

Fine tuning models with cross validation
Model performance pro�les with cross

validation and fit_resamples()

Hyperparameter tuning with grid search

Finalizing model work�ows

cost_complexity tree_depth min_n

0.001 20 35

0.001 20 15

0.001 35 35

0.001 35 15

0.2 20 35

...

Thank you!
MODEL ING WITH T IDYMODELS IN R

