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Classification with decision trees

Decision trees segment the predictor space Time on Website vs Total Visits

by Purchase Outcome

into rectangular regions |

Predict
Yes

Recursive binary splitting
Predict

Q
. . G No
e Algorithm that segments predictor space 5 Purchased
. . . = roduct
into non-overlapping rectangular regions c y
es
v
- : : : e L | _
* Decision splits are added iteratively - Predict | No
I i : . 3 No Predict
o Either horizontal or vertical cut points © Yes

Produces distinct rectangular regions :
Total Website Visits

e For classification, majority class is
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Tree diagrams

e |nterior nodes Interior nodes are dashed lines and terminal
o Decision tree splits (dark boxes) nodes are highlighted rectangular regions
® TerminCII nodes Time on Website vs Total Visits

by Purchase Qutcome

o Regions which are not split further |
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Model specification

Model specification in parsnip dt_model <- decision_tree() %>%

.. set _engine('rpart') %>%
e decision_tree() J (*rp . .) _
. L set_mode('classification')

o (General interface to decision tree models

in parsnip
o Common engineis 'rpart'

o Mode can be either 'classification'
or 'regression'
= For lead scoring data, we need

'classification'
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Feature engineering recipe

Data transformations for lead scoring data leads_recipe <- recipe(purchased ~ .,

data = leads_training) %>%
step_corr(all_numeric(), threshold = 0.9) %>%
step_normalize(all_numeric()) %>%

o Remove multicollinearity step_dummy (all_nominal(), -all_outcomes())

e Encoded in a recipe object

o Normalize numeric predictors

leads_recipe

o Create dummy variables for nominal

Data Recipe

predictors
Inputs:

role #variables

Two R objects to manage

outcome 1
predictor 6

e parsnip model and recipe specification

Operations:

o Combining into one object would make life Correlation filter on all_numeric()

Centering and scaling for all_numeric()

easier

Dummy variables from all_nominal(), -all_outcomes()
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Combining models and recipes

The workflows package is designed for leads_wkfl <- workflow() %>%

streamlining the model process add_model(dt_model) %>%
add_recipe(leads_recipe)

e Combines a parsnip model and recipe
leads_wkfl

object into a single workflow object

== Workflow
Preprocessor: Recipe
Model: decision_tree()

Initialized with the workflow() function B
Recipe Steps

e Add model object with add_model() step_corr()
step_normalize()

e Add recipe object with add_recipe() step_dummy ()

o Must be specification, not a trained

Decision Tree Model Specification (classification)

r*ecipe Computational engine: rpart
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Model fitting with workflows

Training a workflow object
e Pass workflow to last_fit() and provide
data split object

e View model evaluation results with
collect_metrics()

Behind the scenes

e Training and test datasets created
e recipe trained and applied
e Decision tree trained with training data

e Predictions and metrics on test data

leads_wkfl_fit <- leads_wkfl %>%
last_fit(split = leads_split)

leads_wkflL_fit %>%
collect_metrics()

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.771

2 roc_auc binary 0.775
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Collecting predictions

A workflow trained with last_fit() can be leads_wkfl_preds <- leads_wkfl_fit %>%

collect_predictions()

passed to collect_predictions()
leads_wkfl_preds

e Produces detailed results on the test data
# A tibble: 332 x 6

e |ike before, can be used with yardstick id .pred_yes .pred_no .row .pred_class purchased
. h dbl dbl int fct fct
functions to explore performance custom e S SR st sTeR sret
train/test split .120 0.880 2 no no
metriCS train/test split .755 0.245 17 yes yes

train/test split .120 0.880 21 no no
train/test split .120 0.880 22 no no
train/test split .755 0.245 24

# ... with 327 more rows
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Exploring custom metrics

Create a custom metric set with leads_metrics <- metric_set(roc_auc, sens, spec)

metric_set()
leads_wkfl_preds %>%

e Area under the ROC curve, sensitivity, and Leads_metrics(truth = purchased,
ope o ti te = . 1 ,
Sp@ClﬁCltg estlmate pr‘ed_c aSSs
.pred_yes)
Pass predictions datasets to # A tibble: 3 x 3

leads_metrics() to calculate metrics .metric .estimator .estimate
<chr> <chr> <dbl>

1 sens binary 0.75
2 spec binary 0.783

3 roc_auc binary 0.775

MODELING WITH TIDYMODELS IN R



Loan default dataset

Financial data for consumer loans at a bank

e Qutcome variable is loan_default

Loans_df

# A tibble: 872 x 8

loan_default Tloan_purpose missed_payment_2_yr loan_amount interest_rate installment annual_income debt_to_income
<fct> N o <fct> <int> <dbl> <dbl> <dbl> <dbl>
no debt_consolidation no 25000 5.47 855. 62823 39.4
yes medical no 10000 10.2 364. 40000 24.1

no small_business no 13000 6.22 442 . 65000 14.0

no small_business no K1e1010]0] 5.97 1152. 125000 8.09

yes small_business 12000 11.8 308. 65000 20.1
. with 867 more rows

MODELING WITH TIDYMODELS IN R



Let's practice
building workflows!

MODELING WITH TIDYMODELS IN R



Estimating
performance with
cross validation
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Training and test datasets

Creating training and test datasets is the first Training data
step in the modeling process

Original Data

e Guards against overfitting

o Training data is used for model fitting

o Test data is used for model evaluation

Test data

I —
Downside —

e Only one estimate of model performance
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K-fold cross validation

Resampling technique for exploring model
performance

Training data

 Provides K estimates of model performance
during the model fitting process

Original Data
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K-fold cross validation

Resampling technique for exploring model
performance

Training data Cross Validation Folds

 Provides K estimates of model performance Original Dats

during the model fitting process

* Training data is randomly partitioned into K

sets of roughly equal size

Test data

/
\

e Folds are used to perform Kiterations of

model fitting and evaluation
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Machine learning with cross validation

Performing 5-fold cross validation

e Five iterations of model training and Cross Validation Folds

evaluation I
I
I
I
I

MODELING WITH TIDYMODELS IN R



Machine learning with cross validation

Performing 5-fold cross validation

e Five iterations of model training and Cross Validation Folds Iteration 1
evaluation I  performance Evaluation
e Iteration 1 e ~ ModelTraining
o Fold 1 reserved for model evaluation and g " — Modeling  ModelTraining
folds 2 through 5 for model training
e ~ ModelTraining
e ~ ModelTraining
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Machine learning with cross validation

Performing 5-fold cross validation

e Five iterations of model training and Cross Validation Folds Iteration 2
evaluation I Model Training
* lteration 1 e ~ Performance Evaluation
: Modeli
o Fold 1reserved for model evaluation and  peEEEEEm 275 Model Training
folds 2 through 5 for model training I T
e [teration 2 ] Model Training

o Fold 2 reserved for model evaluation
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Machine learning with cross validation

Performing 5-fold cross validation

e Five iterations of model training and Cross Validation Folds Iteration 5
evaluation --- Model Training
e Iteration 1 I N Model Traiing
. Modeling
o Fold 1reserved for model evaluation and T > Model Training
folds 2 through 5 for model training T Model Training
* Iteration 2 I N  Performance Evaluation

o Fold 2 reserved for model evaluation

Five estimates of model performance in total
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Creating cross validation folds

The vfold_cv() function set.seed(214)
leads_folds <- vfold_cv(leads_training,
e Training data v = 10,
strata = purchased)

e Number of folds, v leads_folds

e Stratification variable, strata
# 10-fold cross-validation using stratification

e Execute set.seed() before vfold_cv() 4 A tibble: 10 x 2
for reproducibility splits 1d
<list> <chr>
e splits <split [896/100]> Foldol
o List column with data split objects for 2 el [B96/100] > Foleiz

<split [896/100]> Fold03

creating fold

[897/99]> Fold09
<split [897/99]> Fold10
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Model training with cross validation

The fit_r‘esamples() function leads_rs_fit <- leads_wkfl %>%

fit_resamples(resamples = leads_folds,

e Train a parsnip model or workflow object metrics = leads_metrics)

e Provide cross validation folds, resamples
leads _rs_fit %>%

e Optional custom metric function, metrics selilee: ierries(

o Default is accuracy and ROC AUC

# A tibble: 3 x b5

.metric .estimator mean n std_err

Each metric is estimated 10 times <chr>  <chr> <dbl> <int> <dbl>
1 roc_auc binary 0.823 10 0.0147

e One estimate per fold 2 sens binary 0.786 10 0.0203

spec binary 0.855 10 0.0159

e Average value in mean column

MODELING WITH TIDYMODELS IN R



Detailed cross validation results

The collect_metrics() function rs_metrics <- leads rs fit %>%

collect_metrics(summarize = FALSE)
e Passing summarize = FALSE will provide all

metric estimates for every cross validation rs_metrics
fold
# A tibble: 30 x 4
e 30 total combinations (3 metrics x 10 folds) id netric .estimator .estimate
o .metric column identifies metric <chr> <chr> <chr> <dbl>
. . FoldO1l sens binary .861
o .estimate column gives estimated SoldOl epas  BATaT 891

value for each fold Fold01l roc_auc binary .885
Fold02 sens binary .778
Fold02 spec binary .969

Fold02 roc_auc binary .88b5

. with 24 more rows
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Summarizing cross validation results

The collect_metrics() function returns a

tibble

e Results can be summarized with dplyr

o Start with rs_metrics

o Form groups by .metric values

o Calculate summary statistics with

summarize()

rs_metrics %>%
group_by(.metric) %>%
summarize(min = min(.estimate),
median = median(.estimate),
max = max(.estimate),
mean = mean(.estimate),
sd = sd(.estimate))

# A tibble: 3 x 6
.metric min median max HEER sd
<chr> <dbl> <dbl> <dbl> <dbl> <db1l>

1 roc_auc 0.758 0.806 0.885 0.823 0.0466
sens 0.667 0.792 0.861 0.786 0.0642
3 spec 0.810 0.843 0.969 0.855 0.0502
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Cross validation methodology

Models trained with fit_resamples() are oredict (leads_rs_fit,
not able to provide predictions on new data new_data = leads_test)
sources

e predict() function does not accept Error in UseMethod("predict") :
no applicable method for 'predict' applied to

resample objects .
an object of class

Purpose of fit_resample() "c('resample_results',
'"tune_results',

e Explore and compare the performance thl_df’,
'tbl', 'data.frame')"

profile of different model types

e Select best performing model type and
focus on model fitting efforts
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Let's cross validate!
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Hyperparameter
tuning
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Hyperparameters

Model parameters whose values are set prior
to model training and control model
complexity

parsnip decision tree

e cost_complexity
o Penalizes large number of terminal nodes

e tree_depth
o Longest path from root to terminal node

°* min_n
o Minimum data points required in a node
for further splitting

Total Website Visits < 15

Yes

Total Time on Website < 48

Yes No

l

l

Total Website Visits > 20

No Yes No

|

‘ Predict No

L L

Predict Yes

Predict No ‘ [ Predict Yes

L
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Default hyperparameter values

decision_tree() function sets default
hyperparameter values

e cost_complexity is setto 0.01

e tree_depth is setto 30

e min_n is set to 20

These may not be the best values for all
datasets

e Hyperparameter tuning
o Process of using cross validation to find
the optimal set of hyperparameter values

dt_model <- decision_tree() %>%
set_engine('rpart') %>%
set_mode('classification')
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Labeling hyparameters for tuning

The tUﬂE() function from the tune pqckdge dt_tune_model <- decision_tree(cost_complexity = tune(),

tree_depth = tune(),
e To label hyperparameters for tuning, set min_n = tune()) %>%

. . set_engine('rpart') %>%
them equal to tune() in parsnip model
specification

set_mode('classification')

dt_tune_model
e Creates model object with tuning

parameters
o Will let other functions know that theg Decision Tree Model Specification (classification)

need to be optimized Main Arguments:

cost_complexity = tune()
tree_depth = tune()

min_n = tune()

Computational engine: rpart
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Creating a tuning workflow

workflow objects can be easily updated leads_tune_wkfl <- leads_wkfl %%
update_model(dt_tune_model)

e Prior leads_wkfl
o Feature engineering steps for lead

leads_tune_wkfl

scoring data and decision tree model == Uerktilen
. Preprocessor: Recipe
with default hyperparameters Model: decision tree()
-- Preprocessor
e Pass leads_wkfl to update_model() and Recipe Steps

step_corr()

provide new decision tree model with

step_normalize()

tuning parameters step_dummy ()

Decision Tree Model Specification (classification)

Main Arguments: cost_complexity = tune()
tree_depth = tune()
min_n = tune()

Computational engine: rpart
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Grid search

Most common method for tuning
hyperparameters

e Generate a grid of unique combinations of
hyperparameter values
o For each combination, use cross
validation to estimate model
performance

e Choose best performing combination

cost_complexity tree_depth min_n

0.001
0.001
0.001
0.001
0.2

20
20
35
35
20

35
15
35
15
35
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|ldentifying hyperparameters

The parameters() function from the dials
package

parameters(dt_tune_model)

Collection of 3 parameters for tuning

e Takes a parsnip model object

e Returns a tibble with the hyperparameters identifier type object
labeled by the tune() function, if any cost_complexity cost_complexity nparam[+]

o Used for generating tuning grids with the |k HFEE_SIRn nparam|+]
min_n min_n nparam[+]

dials package
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Random grid

Generating random combinations set.seed(214)

grid_random(parameters(dt_tune_model),

 This method tends to provide greater e = B

chances of finding optimal hyperparameter

values # A tibble: 5 x 3

The grid_random() function cost_complexity tree_depth min_n
<dbl> <int> <int>
e First argument is the results of the 0.0000000758 14 39
parameters() function 0.0245 S 54
0.00000443 11 8

e size sets the number of random 0.000000600 3
combinations to generate 0.00380 5 36

o Execute set.seed() function before
grid_random() for reproducibility
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Saving a tuning grid

First step in hyperparameter tuning set.seed(214)

dt_grid <- grid_random(parameters(dt_tune_model),
e Create and save a tuning grid size = 5)

e dt_grid contains 5 random combinations dt_grid

of hyperparameter values

# A tibble: b x 3
cost_complexity tree_depth min_n

<dbl> <int> <int>
0.0000000758 14 39
0.0243 5 34
0.00000443 8
0.000000600
0.00380
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Hyperparameter tuning with cross validation

The tune_grid() function performs
hyperparameter tuning

Takes the following arguments:

e workflow or parsnip model

e Cross validation object, resamples
e Tuning grid, grid

e Optional metrics function
Returns tibble of results

e _metrics
o List column with results for each fold

dt_tuning <- leads_tune_wkfl %>%

tune_grid(resamples = leads_folds,

dt_tuning

# Tuning results

grid = dt_grid,

metrics = leads_metrics)

# 10-fold cross-validation using stratification

# A tibble: 10 x 4
splits
<list>

<split [896/100]>

<split [897/991>
<split [897/991>

MODELING WITH TIDYMODELS IN R

id .metrics
<chr> <list>
FoldOl <tibble [15 x 7]>

Fold09 <tibble [15 x 7]>
Foldl0 <tibble [15 x 7]>




Exploring tuning results

The collect_metrics() function provides summarized results by default

e Average estimated metric values across all folds per combination

dt_tuning %>%
collect_metrics()

# A tibble: 15 x 9
cost_complexity tree_depth min_n .metric .estimator mean std_err .config
<dbl> <int> <int> <chr> <chr> <dbl> <dbl> <chr>
.0000000758 14 39 roc_auc binary 0.827 .0147 Modell
.0000000758 14 39 sens binary .728 .0277 Modell
.0000000758 14 39 spec binary .865 .0156 Modell
5 34 roc_auc . . Model2

56 ' 0. 0. Model5
56 ' 0. 0. Model5
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Let's get tuning!
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Selecting the best
model
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Detailed tuning results

The collect_metrics() function provides summarized results by default

e Passing summarize = FALSE will provide all hyperparameter tuning results

dt_tuning %>%
collect_metrics(summarize = FALSE)

# A tibble: 150 x 8

id cost_complexity tree_depth min_n .metric ... .estimate .config
<chr> <dbl> <int> <int> <chr> . e <dbl> <chr>
Fold0O1 0.0000000758 14 39 sens . . .75 Modell
FoldOl 0.0000000758 14 39 spec e 0.906 Modell
Fold0O1 0.0000000758 14 39 roc_auc ... Modell

Foldl0 0.00380 36 roc_auc ... . Modelb
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Exploring tuning results

Selecting summarise = FALSE within dt_tuning %>%

collect_metr*ics() returns a tibble collect_metrics(summarize = FALSE) %>%
filter(.metric == 'roc_auc') %>%

e Easy to explore results with dplyr group_by(id) %>%
summarize (min_roc_auc = min(.estimate),

° Exploring ROC AUC median_roc_auc = median(.estimate),

o Select roc_auc metric max_roc_auc = max(.estimate))

o Form groups by id column # A tibble: 10 x 4

id min_roc_auc median_roc_auc max_roc_auc
<chr> <dbl> <dbl> <dbl>
Foldol 0.830 0.885 0.888
Fold02 0.857 0.882 0.885
Fold03 0.818 0.836 0.836

o Calculate .estimate summary statistics

0.762 0.790 0.813
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Viewing the best performing models

The show_best() function

e Displays the top n performing models based on average value of metric

e Modell is the winner

dt_tuning %>%
show_best(metric = 'roc_auc', n = 5)

# A tibble: 5 x 9

cost_complexity tree_depth min_n .metric .estimator std_err .config

<dbl> <int> <int> <chr> <chr> <dbl> <chr>
0.0000000758 14 39 roc_auc binary 0.0147 Modell
0.00380 5 36 roc_auc binary 0.0146 Modelb
0.0243 5 34 roc_auc binary 0.0147 Model2
0.00000443 roc_auc binary 0.00786 Modeld
0.000000600 5 roc_auc binary 0.0131 Model4
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Selecting a model

The select_best() function

e Pass dt_tuning results to select_best()

e Select the metric on which to evaluate
performance

Returns a tibble with the best performing
model and hyperparameter values

best_dt_model <- dt_tuning %>%
select_best(metric = 'roc_auc')

best_dt_model

# A tibble: 1 x 4
cost_complexity tree_depth min_n

<dbl> <int> <int>
0.0000000758 14 39

MODELING WITH TIDYMODELS IN R
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Finalizing the workflow

The finalize_workflow() function will final_leads_wkfl <- leads_tune wkfl %>%
finalize_workflow(best_dt_model)

finalize a workflow that contains a model .
final_leads_wkTfl

object with tuning parameters

== Workflow
e Pass workflow ObjeCt Preprocessor: Recipe
Model: decision_tree()
e A tibble with one row of final model ~- Preprocessor
Recipe Steps
hyperparameter values step_corr ()

step_normalize()

o Column names must match

step_dummy ()

hyperparameters in model object

Decision Tree Model Specification (classification)
Main Arguments:
cost_complexity = 0.0000000758
tree_depth = 14
Returns a workflow object with set nin_n = 39

Computational engine: rpart

hyperparameter values
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Model fitting

Finalized workflow object can be trained
with last_fit() and original data split

object, leads_split

Behind the scenes

e Training and test datasets created
e recipe trained and applied

e Tuned decision tree trained with entire

training dataset

e Predictions and metrics on test data

leads_final_fit <- final_leads_wkfl %>%
last_fit(split = leads_split)

leads_final_fit %>%
collect_metrics()

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.771

2 roc_auc binary 0.793
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Let's practice!
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Congratulations!

MODELING WITH TIDYMODELS IN R
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The tidymodels ecosystem
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Regression modeling

Specifying models with parsnip Training and evaluating linear regression
models

R-Squared Plot
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Classification modeling

Logistic regression with logistic_reg() Evaluating classification performance with
confusion matrices and ROC curves
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Feature engineering

STREAMLINED DATA PRE-PROCESSING FOR
STATISTICAL + MACHINE LEARNING MODELS

Artwork by @allison_horst
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Fine tuning models with cross validation

Model performance profiles with cross e Hyperparameter tuning with grid search

validation and fit_resamples()

Training data Cross Validation Folds

Original Data

0.001
0.001
0.001
0.001
0.2

X datacamp

e Finalizing model workflows

20
20
35
35
20

cost_complexity tree_depth min_n

35
15
35
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35
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Thank you!
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