Directed networks

NETWORK ANALYSIS IN R

James Curley Associate Professor, University of Texas at Austin

Directionality

Undirected

Directed

Examining the igraph object

Undirected:

```
IGRAPH UN-- 7 7 --
+ attr: name (v/c)
+ edges (vertex names):
[1] A--B A--C A--D A--E A--F E--F F--G
```

Directed:

```
IGRAPH DN-- 7 7 --
+ attr: name (v/c)
+ edges (vertex names):
[1] A->E B->A C->A D->A F->A F->E F->G
```

R datacamp

Checking igraph objects

is.directed(g)

[1] TRUE

is.weighted(g)

[1] FALSE

In-degree and out-degree

	out-degree	in-degree		
Α	1	4		
В	1	0		
С	1	0		
D	1	0		
Ε	0	2		
F	3	0		
G	0	1		

Is there an edge between A & Show all edges to or from A: E?

incident(g,'A', mode=c("all"))

+ 5/7 edges (vertex names): [1] A->E B->A C->A D->A F->A

Find the starting vertex of all edges:

head_of(g, E(g))

+ 7/7 vertices, named: [1] A B C D F F F

Let's practice!

Relationships between vertices

NETWORK ANALYSIS IN R

James Curley

Associate Professor, University of Texas at Austin

R datacamp

Identifying neighbors

neighbors(g, "F", mode = c("all"))

+ 5/12 vertices, named: [1] A E G H I

Identifying neighbors in common

x <- neighbors(
 g, "F", mode = c("all")
)</pre>

```
y <- neighbors(
  g, "D", mode = c("all")
)</pre>
```

intersection(x,y)

А

R datacamp

Paths

farthest_vertices(g)

\$vertices

+ 2/12 vertices, named: [1] J G

\$distance
[1] 6

get_diameter(g)

+ 7/12 vertices, named: [1] J D A E H F G

R datacamp

Identifying vertices reachable in N steps

ego(g, 2, 'F', mode=c('out'))

+ 5/12 vertices, named: [1] F A E G H

R datacamp

Let's practice!

Important and influential vertices

NETWORK ANALYSIS IN R

James Curley

Associate Professor, University of Texas at Austin

R datacamp

Measures of vertex importance

- degree
- betweenness
- eigenvector centrality
- closeness centrality
- pagerank centrality

Out-degree and in-degree

degree(g, mode = c("out"))

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L

 1
 1
 1
 1
 3
 0
 1
 1
 1
 1
 1

acamp

Betweenness

I to H:

I -> F -> E -> H I -> F -> A -> E -> H

K to E:

 $K \rightarrow D \rightarrow A \rightarrow E$

B to G:

 $B \rightarrow A \rightarrow E \rightarrow H \rightarrow F \rightarrow G$

Betweenness

betweenness(g, directed = TRUE) A B C D E F G H I J K L 24 0 5 10 23 16 0 17 0 0 0 0

А	В	С	D	Е	F
0.22	0.00	0.05	0.09	0.21	0.15
G	Н	I	J	К	L
0.00	0.15	0.00	0.00	0.00	0.00

R datacamp

Let's practice!

