Should we
parallelize?

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

Let's construct a building

Building a floor on top of the last one:
sequential

Installing windows to finished structure:
parallel

PARALLEL PROGRAMMING IN R

The sequential-parallel scale

Cumulative sum Creating variables

Sequential - -l -l Parallel

P

Square root

Read/write data

PARALLEL PROGRAMMING IN R

A classic numerical operation

Calculating the square roots of a million numbers <- 1:1000000

numbers
start <- Sys.time()
sg_roots <- lapply(numbers, sqrt)

end <- Sys.time()

end - start

Time difference of 1.044573 secs

PARALLEL PROGRAMMING IN R

How could we parallelize the square root?

1 to
200,000

200,001 to |
400,000

-~

I

400,001 to |
600,000

1 million
numbers

-

600,001 to |
800,000

(800,001 to |
1,000,000

PARALLEL PROGRAMMING IN R

How could we parallelize the square root?

Cluster
lto |
> Core 1
[2oo,oooJ :]
200,001 to | R —
400,000 :
1 million R (400,001 to R :]Core 3
numbers \\ 600,000
(600,001 to
>
[800,001 to | S
1,000,000 [:

PARALLEL PROGRAMMING IN R

How could we parallelize the square root?

Cluster
1t
©] > Core 1l
2oo,oooJ
200,001 to | R —
400,000
1 million r400,001 t01 rm 1 million
numbers 600,000 square roots

-

600,001 to |
800,000

(800,001 to |
1,000,000

// |
4

PARALLEL PROGRAMMING IN R

A parallelized numerical operation

The square roots of a million numbers in library(parallel)

parallel
my_cluster <- makeCluster(3)

start <- Sys.time()
sg_roots <- parLapply(my_cluster, numbers, sqrt)
end <- Sys.time()

stopCluster(my_cluster)

end - start

Time difference of 0.8416824 secs

PARALLEL PROGRAMMING IN R

Not as fast as we expected

1 to
] > Core 1
2oo,oooJ
(200,001 to | R —
/ 400,090 S\‘
1 million r400,001 to | () 1 million
> > C 3 >
{numbers \ 600,000 -°r€ ° sguare roots]
(600,001 to | R
800,000
(800,001 to | R
1,000,000

PARALLEL PROGRAMMING IN R

Not as fast as we expected

Split data |
1t
© > Core 1
2oo,oooJ
(200,001 to | R —
/ 400,00 S\‘
1 million r400,001 to | () 1 million
> > Core 3 >
{numbers \ 600,000 -°r€ ° sguare roots]
(600,001 to | R
800,000
(800,001 to | R
1,000,000

PARALLEL PROGRAMMING IN R

Not as fast as we expected

_ Copy to
Split data
1to | workers
> Core 1l
200,000J
200,001 to | S —
/ 400,000 D\\‘
1 million 400,001 to | () 1 million
> > Core 3 >
{numbers \ 600,000 =o€ 2 square roots]
(600,001 to | S
800,000
(800,001 to | S
1,000,000

PARALLEL PROGRAMMING IN R

Not as fast as we expected

Copy to Collect

lto | wo)rkers results
200,000J

(200,001 to S —
/k 400,00 D\‘
1 million 400,001 to | () 1 million
> > C 3 >
{numbers \ 600,000 -°r€ ° sguare roots]
(600,001 to S
800,000

(800,001 to |
1,000,000

Split data

PARALLEL PROGRAMMING IN R

Not as fast as we expected

Copy to Collect

lto | wgrkers results
200,000J

(200,001 to S —
/ 400,00 D\‘
1 million 400,001 to | () 1 million
> > C 3 >
{numbers \ 600,000 -°r€ ° sguare roots]
(600,001 to S
800,000

(800,001 to |
1,000,000

Split data

Orchestration

PARALLEL PROGRAMMING IN R

So, should we parallelize?

For a sufficiently complex task, consider:
Pros Cons

e Faster than sequential * Requires special programming skills (but

|
e More cost-efficient in the long run you are all set!)

 High memory usage

PARALLEL PROGRAMMING IN R

Let's practice!

PARALLEL PROGRAMMING IN R

Parallelization in R

PARALLEL PROGRAMMING IN R

®

Nabeel Imam
Data Scientist

A practical example
The data

print(file_list)
./uni_data_country/Argentina.csv" _ '
./uni_data_country/Armenia.csv"

./uni_data_country/Australia.csv"

./uni_data_country/Austria.csv"
./uni_data_country/Azerbaijan.csv"
./uni_data_country/Bahrain.csv"
./uni_data_country/Bangladesh.csv"
./uni_data_country/Belarus.csv"

./uni_data_country/Belgium.csv"

./uni_data_country/Bolivia.csv"

PARALLEL PROGRAMMING IN R

Add a column

for (file in file_list) A1
df <- read.csv(file)
df$toplB0 <- NA
for (r in 1:nrow(df)) A

df$topl0O[r] <- df$world_rank[r] <= 100

write.csv(df, file)

PARALLEL PROGRAMMING IN R

Profiling
Code Output

Flame Graph Data

library(profvis) <expr> Memory Time
profvis({

for (file in file list) {
profvis({
for (file in file_1list) {

df <- read.csv(file) 36 40 D

dfstople® <- NA

df <- read.csv(file) for (r in 1:nrow(df)) { 0.2 50
dfstople@[r] <- dfsRank[r] == 100 1.1 30
df$toplB0 <- NA }

write.csv(df, file)

for (r in 1:nrow(df)) A
df$toplBB[r] <- df$Rank[r] <= 100

}

write.csv(df, file)

})

PARALLEL PROGRAMMING IN R

Let's parallelize

The loop Function

for (file in file_1list) { add_col <- function(file_path) A{
df <- read.csv(file) df <- read.csv(file_path)
df$toplBO <- NA df$toplBGO <- NA
for (r in 1:nrow(df)) { for (r in 1:nrow(df)) {

df$topl0O[r] <- df$Rank[r] <= 100 df$topl00[r] <- df$Rank[r] <= 100

5 +
write.csv(df, file) write.csv(df, file_path)

} +

cl <- makeCluster(6)
dummy <- parlLapply(cl, file_list, add_col)
stopCluster(cl)

PARALLEL PROGRAMMING IN R

Practical considerations: number of cores

Detecting cores Parallelized code
detectCores() cl <- makeCluster(detectCores() - 2)
dummy <- parLapply(cl, file_list, add_col)
stopCluster(cl)

PARALLEL PROGRAMMING IN R

Practical considerations: cluster type
PSOCK cluster (default) FORK cluster

cl <- makeCluster(detectCores() - 2) cl <- makeCluster(detectCores() - 2,
type = "FORK")
e Creates copies of current R session

. :
e Cores do not share memory Creates subprocesses from R session

e Works on any OS (Windows, Mac, Linux) e Cores share memory (faster than PSOCK)

e Does not work on Windows

PARALLEL PROGRAMMING IN R

Let's exercise!

PARALLEL PROGRAMMING IN R

Measuring the
benefits

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

Toy example

numbers <- 1:1000000

Sequential
sgroots <- lapply(numbers, sqrt)

Parallel

cl <- makeCluster(4)

sgroots <- parLapply(cl, numbers, sqgrt)
stopCluster(my_cluster)

Which will perform better?

PARALLEL PROGRAMMING IN R

Benchmarking performance

Run code several times to estimate average
execution time

library(microbenchmark)

Unit: milliseconds

"Sequential" — lapply(numbepsl qut)’ Sequential 633.96 838.09 993.59 10
"Parallel” = { Parallel 1136.95 1247.29 1557.58 10
cl <- makeCluster(4)
parLapply(cl, numbers, sqrt) e Simple numerical operations rarely benefit
Sicwptlsites (i elUeer) from parallelization
lp,
times = 10 e Profiling gives line-by-line report,

benchmarking gives overall execution times

PARALLEL PROGRAMMING IN R

The elephant in the room

sqroots <- sqgrt(numbers)

X datacamp PARALLEL PROGRAMMING IN R

Vectorization

sqroots <- sqrt(numbers) microbenchmark/(
"Vectorized" = sgrt(numbers),
e Base R functions, like sqrt() , are "Sequential® = lapply(numbers, sart),
. "Parallel" = {
vectorized.
cl <- makeCluster(4)
e Map a single function to many inputs parLapply(cl, numbers, sqrt)
stopCluster(my_cluster)
e Very fast but only applicable to simple }
operations times = 10)

Unit: milliseconds
expr min mean max neval
Vectorized 2.3904 9.2071 66.303 10

Sequential 352.1166 771.7491 1004.753 10
Parallel 1191.3176 1377.6926 1700.316 10

PARALLEL PROGRAMMING IN R

The bootstrap

Sampling from the current data with
replacement

print(ls_df)

$°2001°
Country
1 Afghanistan
2 Albania
3 Algeria

$2002°
Country

1 Afghanistan
2 Albania
3 Algeria

Life_expectancy
56.3
74.3
71.1

Life_expectancy
56.8
74.6
71.6

PARALLEL PROGRAMMING IN R

Classic version

df <- ls_df$ 2001° Global life expectancy estimate,
2001
estimates <- rep(0, 10000) | |
I I
750 - : :
for (i in 1:10000) { o : :
S 500+ : :
o
b <- sample(df$Life_expectancy, o : :
replace = T) 250+ : :
0 : :
estimates[i] <- mean(b) 65 66 67 68 69 70
+ estimates

e Confidence interval using quantiles:
quantile(estimates, c(0.025, 0.975))

PARALLEL PROGRAMMING IN R

The good news

Bootstraps can be parallelized

estimates <- rep(0, 10000)
for (i in 1:10000) A{

b <- sample(df$Life_expectancy,
replace = T)

estimates[i] <- mean(b)

}

boot_dist <- function (df) {

estimates <- rep(0, 10000)

for (i in 1:10000)

{

b <- sample(df$Life_expectancy, replace = T)

estimates[i] <- mean(b)

return(estimates)

cl <- makeCluster(4)

1s_dists <- parLapply(cl, ls_df, boot_dist)

stopCluster(cl)

PARALLEL PROGRAMMING IN R

The benefits

microbenchmark(How to get there:
"Lapply" = lapply(ls_df, boot_dist),
"parLapply" = { e Profile existing code, identify slowest part

cl <- makeCluster(4)

parLapply(cl, 1s_df, boot_dist) e Parallelize/optimize this step

SiEEpCluser el e Benchmark and compare
H,

times = 10

Unit: seconds
expr min IEER max neval

lLapply 3.6938 4.2184 4.5267 10
parLapply 1.9006 2.5166 2.7292 10

PARALLEL PROGRAMMING IN R

Let's practice!

PARALLEL PROGRAMMING IN R

