
Should we
parallelize?

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

Let's construct a building

Building a floor on top of the last one:
sequential

Installing windows to finished structure:
parallel

PARALLEL PROGRAMMING IN R

The sequential-parallel scale

PARALLEL PROGRAMMING IN R

A classic numerical operation
Calculating the square roots of a million
numbers

numbers <- 1:1000000

start <- Sys.time()
sq_roots <- lapply(numbers, sqrt)
end <- Sys.time()

end - start

Time difference of 1.044573 secs

PARALLEL PROGRAMMING IN R

How could we parallelize the square root?

PARALLEL PROGRAMMING IN R

How could we parallelize the square root?

PARALLEL PROGRAMMING IN R

How could we parallelize the square root?

PARALLEL PROGRAMMING IN R

A parallelized numerical operation
The square roots of a million numbers in
parallel

library(parallel)

my_cluster <- makeCluster(3)

start <- Sys.time()
sq_roots <- parLapply(my_cluster, numbers, sqrt)
end <- Sys.time()

stopCluster(my_cluster)

end - start

Time difference of 0.8416824 secs

PARALLEL PROGRAMMING IN R

Not as fast as we expected

PARALLEL PROGRAMMING IN R

Not as fast as we expected

PARALLEL PROGRAMMING IN R

Not as fast as we expected

PARALLEL PROGRAMMING IN R

Not as fast as we expected

PARALLEL PROGRAMMING IN R

Not as fast as we expected

PARALLEL PROGRAMMING IN R

So, should we parallelize?
For a sufficiently complex task, consider:

Pros

Faster than sequential

More cost-efficient in the long run

Cons

Requires special programming skills (but
you are all set!)

High memory usage

Let's practice!
PARALLEL PROGRAMMING IN R

Parallelization in R
PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

A practical example
The data

print(file_list)

 [1] "./uni_data_country/Argentina.csv"
 [2] "./uni_data_country/Armenia.csv"
 [3] "./uni_data_country/Australia.csv"
 [4] "./uni_data_country/Austria.csv"
 [5] "./uni_data_country/Azerbaijan.csv"
 [6] "./uni_data_country/Bahrain.csv"
 [7] "./uni_data_country/Bangladesh.csv"
 [8] "./uni_data_country/Belarus.csv"
 [9] "./uni_data_country/Belgium.csv"
[10] "./uni_data_country/Bolivia.csv"
...

PARALLEL PROGRAMMING IN R

Add a column
for (file in file_list) {

 df <- read.csv(file)

 df$top100 <- NA

 for (r in 1:nrow(df)) {
 df$top100[r] <- df$world_rank[r] <= 100
 }

 write.csv(df, file)
}

PARALLEL PROGRAMMING IN R

Profiling
Code

library(profvis)

profvis({
 for (file in file_list) {

 df <- read.csv(file)
 df$top100 <- NA

 for (r in 1:nrow(df)) {
 df$top100[r] <- df$Rank[r] <= 100
 }
 write.csv(df, file)
 }
})

Output

PARALLEL PROGRAMMING IN R

Let's parallelize
The loop

 for (file in file_list) {

 df <- read.csv(file)
 df$top100 <- NA

 for (r in 1:nrow(df)) {
 df$top100[r] <- df$Rank[r] <= 100
 }
 write.csv(df, file)
 }

Function

add_col <- function(file_path) {

 df <- read.csv(file_path)
 df$top100 <- NA

 for (r in 1:nrow(df)) {
 df$top100[r] <- df$Rank[r] <= 100
 }
 write.csv(df, file_path)
}

cl <- makeCluster(6)
dummy <- parLapply(cl, file_list, add_col)
stopCluster(cl)

PARALLEL PROGRAMMING IN R

Practical considerations: number of cores
Detecting cores

detectCores()

[1] 8

Parallelized code

cl <- makeCluster(detectCores() - 2)

dummy <- parLapply(cl, file_list, add_col)

stopCluster(cl)

PARALLEL PROGRAMMING IN R

Practical considerations: cluster type
PSOCK cluster (default)

cl <- makeCluster(detectCores() - 2)

Creates copies of current R session

Cores do not share memory

Works on any OS (Windows, Mac, Linux)

FORK cluster

cl <- makeCluster(detectCores() - 2,
 type = "FORK")

Creates subprocesses from R session

Cores share memory (faster than PSOCK)

Does not work on Windows

Let's exercise!
PARALLEL PROGRAMMING IN R

Measuring the
benefits

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

Toy example
numbers <- 1:1000000

Sequential
sqroots <- lapply(numbers, sqrt)

Parallel
cl <- makeCluster(4)
sqroots <- parLapply(cl, numbers, sqrt)
stopCluster(my_cluster)

Which will perform better?

PARALLEL PROGRAMMING IN R

Benchmarking performance
Run code several times to estimate average
execution time

library(microbenchmark)

microbenchmark(
 "Sequential" = lapply(numbers, sqrt),
 "Parallel" = {
 cl <- makeCluster(4)
 parLapply(cl, numbers, sqrt)
 stopCluster(my_cluster)
 },
 times = 10
)

Unit: milliseconds
 expr min mean max neval
Sequential 633.96 838.09 993.59 10
 Parallel 1136.95 1247.29 1557.58 10

Simple numerical operations rarely benefit
from parallelization

Profiling gives line-by-line report,
benchmarking gives overall execution times

PARALLEL PROGRAMMING IN R

The elephant in the room
sqroots <- sqrt(numbers)

PARALLEL PROGRAMMING IN R

Vectorization
sqroots <- sqrt(numbers)

Base R functions, like sqrt() , are
vectorized.

Map a single function to many inputs

Very fast but only applicable to simple
operations

microbenchmark(
 "Vectorized" = sqrt(numbers),
 "Sequential" = lapply(numbers, sqrt),
 "Parallel" = {
 cl <- makeCluster(4)
 parLapply(cl, numbers, sqrt)
 stopCluster(my_cluster)
 },
 times = 10)

Unit: milliseconds
 expr min mean max neval
Vectorized 2.3904 9.2071 66.303 10
Sequential 352.1166 771.7491 1004.753 10
 Parallel 1191.3176 1377.6926 1700.316 10

PARALLEL PROGRAMMING IN R

The bootstrap
Sampling from the current data with
replacement

print(ls_df)

$`2001`
 Country Life_expectancy Year
 1 Afghanistan 56.3 2001
 2 Albania 74.3 2001
 3 Algeria 71.1 2001
...
$`2002`
 Country Life_expectancy Year
 1 Afghanistan 56.8 2002
 2 Albania 74.6 2002
 3 Algeria 71.6 2002
...

PARALLEL PROGRAMMING IN R

Classic version
df <- ls_df$`2001`

estimates <- rep(0, 10000)

for (i in 1:10000) {

 b <- sample(df$Life_expectancy,
 replace = T)

 estimates[i] <- mean(b)
 }

Confidence interval using quantiles:
quantile(estimates, c(0.025, 0.975))

PARALLEL PROGRAMMING IN R

The good news
Bootstraps can be parallelized

estimates <- rep(0, 10000)

for (i in 1:10000) {

 b <- sample(df$Life_expectancy,
 replace = T)

 estimates[i] <- mean(b)
 }

boot_dist <- function (df) {

 estimates <- rep(0, 10000)

 for (i in 1:10000) {
 b <- sample(df$Life_expectancy, replace = T)
 estimates[i] <- mean(b)
 }

 return(estimates)
}

cl <- makeCluster(4)
ls_dists <- parLapply(cl, ls_df, boot_dist)
stopCluster(cl)

PARALLEL PROGRAMMING IN R

The benefits
microbenchmark(
 "lapply" = lapply(ls_df, boot_dist),
 "parLapply" = {
 cl <- makeCluster(4)
 parLapply(cl, ls_df, boot_dist)
 stopCluster(cl)
 },
 times = 10
)

Unit: seconds
 expr min mean max neval
 lapply 3.6938 4.2184 4.5267 10
parLapply 1.9006 2.5166 2.7292 10

How to get there:

Profile existing code, identify slowest part

Parallelize/optimize this step

Benchmark and compare

Let's practice!
PARALLEL PROGRAMMING IN R

