Should we parallelize?

PARALLEL PROGRAMMING IN R

Nabeel Imam Data Scientist

Let's construct a building

Building a floor on top of the last one: sequential

Installing windows to finished structure: parallel

The sequential-parallel scale

Parallel

A classic numerical operation

Calculating the square roots of a million numbers

numbers <- 1:100000

start <- Sys.time()</pre> sq_roots <- lapply(numbers, sqrt)</pre> end <- Sys.time()</pre>

end - start

Time difference of 1.044573 secs

How could we parallelize the square root?

How could we parallelize the square root?

How could we parallelize the square root?

A parallelized numerical operation

The square roots of a million numbers in parallel

library(parallel)

my_cluster <- makeCluster(3)</pre>

start <- Sys.time()</pre> sq_roots <- parLapply(my_cluster, numbers, sqrt)</pre> end <- Sys.time()</pre>

stopCluster(my_cluster)

end - start

Time difference of 0.8416824 secs

1 million square roots

1 million square roots

1 million square roots

1 million square roots

1 million square roots

So, should we parallelize?

For a sufficiently complex task, consider:

Pros

- Faster than sequential
- More cost-efficient in the long run

Cons

- Requires special programming skills (but \bullet *you* are all set!)
- High memory usage \bullet

Let's practice!

Parallelization in R

PARALLEL PROGRAMMING IN R

Nabeel Imam Data Scientist

A practical example

The data

print(file_list)

- [1] "./uni_data_country/Argentina.csv"
- [2] "./uni_data_country/Armenia.csv"
- [3] "./uni_data_country/Australia.csv"
- [4] "./uni_data_country/Austria.csv"
- [5] "./uni_data_country/Azerbaijan.csv"
- [6] "./uni_data_country/Bahrain.csv"
- [7] "./uni_data_country/Bangladesh.csv"
- [8] "./uni_data_country/Belarus.csv"
- [9] "./uni_data_country/Belgium.csv"
- [10] "./uni_data_country/Bolivia.csv"

• • •

Add a column

```
for (file in file_list) {
```

```
df <- read.csv(file)</pre>
```

```
df$top100 <- NA
```

```
for (r in 1:nrow(df)) {
  df$top100[r] <- df$world_rank[r] <= 100
}
write.csv(df, file)
```


}

Profiling

Code

```
library(profvis)
profvis({
  for (file in file_list) {
    df <- read.csv(file)</pre>
    df$top100 <- NA
    for (r in 1:nrow(df)) {
      df$top100[r] <- df$Rank[r] <= 100
    }
    write.csv(df, file)
  }
```

})

Output

Flame	Graph Data		
<expr></expr>	•	Memory	Time
1	profvis({		
2	<pre>for (file in file_list) {</pre>		
3			
4	df <- read.csv(file)	3.6	40
5			
6	df\$top100 <- NA		
7			
8	<pre>for (r in 1:nrow(df)) {</pre>	0.2	50
9	df\$top100[r] <- df\$Rank[r] <= 100	1.1	30
10	}		
11			
12	write.csv(df, file)		
13	}		
14	})		
15			

Let's parallelize

The loop

```
for (file in file_list) {
  df <- read.csv(file)</pre>
  df$top100 <- NA
  for (r in 1:nrow(df)) {
    df$top100[r] <- df$Rank[r] <= 100
  }
  write.csv(df, file)
}
```

Function

```
add_col <- function(file_path) {</pre>
```

```
df <- read.csv(file_path)</pre>
df$top100 <- NA
```

```
for (r in 1:nrow(df)) {
    df$top100[r] <- df$Rank[r] <= 100
  }
  write.csv(df, file_path)
}
```

```
cl <- makeCluster(6)</pre>
dummy <- parLapply(cl, file_list, add_col)</pre>
stopCluster(cl)
```

Practical considerations: number of cores

Detecting cores

Parallelized code

detectCores()

[1] 8

cl <- makeCluster(detectCores() - 2)</pre>

dummy <- parLapply(cl, file_list, add_col)</pre>

stopCluster(cl)

Practical considerations: cluster type PSOCK cluster (default) FORK cluster

cl <- makeCluster(detectCores() - 2)</pre>

- Creates copies of current R session
- Cores do not share memory
- Works on any OS (Windows, Mac, Linux)

cl <- makeCluster(detectCores() - 2,</pre> type = "FORK")

- Creates subprocesses from R session
- Cores share memory (faster than PSOCK)
- Does not work on Windows

Let's exercise!

Measuring the benefits

PARALLEL PROGRAMMING IN R

Nabeel Imam Data Scientist

Toy example

numbers <- 1:100000

```
# Sequential
sqroots <- lapply(numbers, sqrt)</pre>
```

```
# Parallel
cl <- makeCluster(4)</pre>
sqroots <- parLapply(cl, numbers, sqrt)</pre>
stopCluster(my_cluster)
```

Which will perform better?

Benchmarking performance

Run code several times to estimate average execution time

```
library(microbenchmark)
microbenchmark(
  "Sequential" = lapply(numbers, sqrt),
  "Parallel" = {
    cl <- makeCluster(4)</pre>
    parLapply(cl, numbers, sqrt)
    stopCluster(my_cluster)
 },
 times = 10
```

Unit: m	illi	seconds			
e	expr	min	mean	max	neval
Sequent	ial	633.96	838.09	993.59	10
Paral	lel	1136.95	1247.29	1557.58	10

- Simple numerical operations rarely benefit from parallelization
- Profiling gives line-by-line report,

PARALLEL PROGRAMMING IN R

benchmarking gives overall execution times

The elephant in the room

sqroots <- sqrt(numbers)</pre>

Vectorization

sqroots <- sqrt(numbers)</pre>

- Base R functions, like sqrt(), are \bullet vectorized.
- Map a single function to many inputs
- Very fast but only applicable to simple operations

```
microbenchmark(
  "Vectorized" = sqrt(numbers),
  "Sequential" = lapply(numbers, sqrt),
  "Parallel" = {
    cl <- makeCluster(4)</pre>
    parLapply(cl, numbers, sqrt)
    stopCluster(my_cluster)
  },
  times = 10)
```

Unit: milli	iseconds			
expr	min	mean	max	neval
Vectorized	2.3904	9.2071	66.303	10
Sequential	352.1166	771.7491	1004.753	10
Parallel	1191.3176	1377.6926	1700.316	10

The bootstrap

Sampling from the current data with replacement

print(ls_df)

\$`2001` Country L 1 Afghanistan 2 Albania 3 Algeria • • \$`2002` Country L 1 Afghanistan 2 Albania 3 Algeria

• • •

ife_expectancy	Year
56.3	2001
74.3	2001
71.1	2001

ife_expectancy	Year
56.8	2002
74.6	2002
71.6	2002

Classic version

```
df <- ls_df$`2001`
estimates <- rep(0, 10000)</pre>
for (i in 1:10000) {
  b <- sample(df$Life_expectancy,</pre>
                replace = T)
  estimates[i] <- mean(b)</pre>
  }
```


• Confidence interval using quantiles:

Global life expectancy estimate,

quantile(estimates, c(0.025, 0.975))

The good news

Bootstraps can be parallelized

```
estimates <- rep(0, 10000)</pre>
```

```
for (i in 1:10000) {
```

```
b <- sample(df$Life_expectancy,</pre>
             replace = T)
```

```
estimates[i] <- mean(b)</pre>
}
```

```
boot_dist <- function (df) {</pre>
  estimates <- rep(0, 10000)</pre>
  for (i in 1:10000) {
     estimates[i] <- mean(b)</pre>
  }
  return(estimates)
}
cl <- makeCluster(4)</pre>
ls_dists <- parLapply(cl, ls_df, boot_dist)</pre>
stopCluster(cl)
```

b <- sample(df\$Life_expectancy, replace = T)</pre>

The benefits

```
microbenchmark(
  "lapply" = lapply(ls_df, boot_dist),
  "parLapply" = {
    cl <- makeCluster(4)</pre>
    parLapply(cl, ls_df, boot_dist)
    stopCluster(cl)
  },
  times = 10
```

Unit: seconds				
expr	min	mean	max	neval
lapply	3.6938	4.2184	4.5267	10
parLapply	1.9006	2.5166	2.7292	10

How to get there:

- Profile existing code, identify slowest part
- Parallelize/optimize this step
- Benchmark and compare \bullet

Let's practice!

