
Monitoring and
managing memory

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

The queue and the space

PARALLEL PROGRAMMING IN R

The parallel flow

PARALLEL PROGRAMMING IN R

The parallel flow

PARALLEL PROGRAMMING IN R

The births data
print(ls_files)

 [1] "./births/AK.csv"
 [2] "./births/AL.csv"
 [3] "./births/AR.csv"
 [4] "./births/AZ.csv"
 [5] "./births/CA.csv"
 [6] "./births/CO.csv"
 [7] "./births/CT.csv"
 [8] "./births/DC.csv"
 [9] "./births/DE.csv"
 [10] "./births/FL.csv"
...

PARALLEL PROGRAMMING IN R

Mapping with futures
plan(multisession, workers = 2)
ls_df <- future_map(ls_files, read.csv)
plan(sequential)

print(ls_df)

[[1]]
 state month plurality weight_gain_pounds mother_age
 AK 1 1 30 43
 ...
[[2]]
 state month plurality weight_gain_pounds mother_age
 AL 10 1 60 33
 ...
...

PARALLEL PROGRAMMING IN R

Profiling with two workers
profvis({
 plan(multisession, workers = 2)
 ls_df <- future_map(ls_files, read.csv)
 plan(sequential)
})

PARALLEL PROGRAMMING IN R

Profiling with four workers
profvis({
 plan(multisession, workers = 4)
 ls_df <- future_map(ls_files, read.csv)
 plan(sequential)
})

PARALLEL PROGRAMMING IN R

Behind the scenes

PARALLEL PROGRAMMING IN R

Managing memory by chunking
config <- furrr_options(chunk_size = 26)
plan(multisession, workers = 4)
ls_df <- future_map(ls_files, read.csv,
 .options = config)
plan(sequential)

PARALLEL PROGRAMMING IN R

Managing memory by chunking
profvis({
 config <- furrr_options(chunk_size = 26)
 plan(multisession, workers = 4)
 ls_df <- future_map(ls_files, read.csv,
 .options = config)
 plan(sequential)
})

PARALLEL PROGRAMMING IN R

Chunking with parallel
cl <- makeCluster(4)

ls_df <- parLapply(cl, ls_files, read.csv)

stopCluster(cl)

PARALLEL PROGRAMMING IN R

Chunking with parallel
cl <- makeCluster(4)
ls_df <- parLapply(cl, ls_files, read.csv,
 chunk.size = 26)
stopCluster(cl)

PARALLEL PROGRAMMING IN R

When to chunk?
Chunking is performed optimally by default

With large data objects and running low on memory
Try using fewer cores if feasible

Experiment with a few chunk sizes to get to optimum

Let's practice!
PARALLEL PROGRAMMING IN R

Reproducibility in
parallel

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

What is reproducibility?
Same input produces the same results every time we run the code

Code can be tested

Results can be replicated by others

PARALLEL PROGRAMMING IN R

The customer lucky draw
print(customer_ids)

$USA
 [1] 465500 612953 106420 279492 376941 163474 164493 801983 898941 406844 829157 ...
$Canada
 [1] 140521 398164 817703 715385 771801 656814 721270 719120 425819 774558 111418 ...
$Mexico
 [1] 714842 486725 706765 858020 790364 390760 198667 419197 352989 202494 756636 ...
$UK
 [1] 886285 151731 274940 779966 375535 431644 880434 649074 765423 449147 408041 ...

PARALLEL PROGRAMMING IN R

The customer lucky draw
lucky_draw <- function (ids) {
 sample(ids, 1)
}

cl <- makeCluster(4)

set.seed(1234)
parLapply(cl, customer_ids, lucky_draw)
stopCluster(cl)

$USA
[1] 673576

$Canada
[1] 164613

$Mexico
[1] 769658

$UK
[1] 683102

PARALLEL PROGRAMMING IN R

The reproducibility problem
Winners from first run

$USA
[1] 673576

$Canada
[1] 164613

$Mexico
[1] 769658

$UK
[1] 683102

Winners from second run

$USA
[1] 638051

$Canada
[1] 133431

$Mexico
[1] 522137

$UK
[1] 856141

PARALLEL PROGRAMMING IN R

Solution
cl <- makeCluster(4)

A seed for all worker processes in cluster
clusterSetRNGStream(cl, 1234)

parLapply(cl, customer_ids, lucky_draw)
stopCluster(cl)

PARALLEL PROGRAMMING IN R

Multiple runs with same results
Winners from first run

$USA
[1] 421408

$Canada
[1] 877562

$Mexico
[1] 460786

$UK
[1] 658513

Winners from second run

$USA
[1] 421408

$Canada
[1] 877562

$Mexico
[1] 460786

$UK
[1] 658513

PARALLEL PROGRAMMING IN R

Multiple runs with same results
First run

cl <- makeCluster(4)

clusterSetRNGStream(cl, 1234)

run1 <- parLapply(cl, customer_ids, lucky_draw)
stopCluster(cl)

Second run

cl <- makeCluster(4)

clusterSetRNGStream(cl, 1234)

run2 <- parLapply(cl, customer_ids, lucky_draw)
stopCluster(cl)

identical(run1, run2)

[1] TRUE

PARALLEL PROGRAMMING IN R

Reproducible results with furrr
First run

config <- furrr_options(seed = 1234)

plan(multisession, workers = 4)

run1 <- future_map(customer_ids, lucky_draw,
 .options = config)
plan(sequential)

Second run

plan(multisession, workers = 4)

run2 <- future_map(customer_ids, lucky_draw,
 # Using the same configuration
 .options = config)
plan(sequential)

identical(run1, run2)

[1] TRUE

PARALLEL PROGRAMMING IN R

Reproducible results with foreach
First run

install.packages("doRNG")
library(doRNG)

cl <- makeCluster(4)
registerDoParallel(cl)
registerDoRNG(1234)

run1 <- foreach(i = customer_ids) %dopar% {
 lucky_draw(i)
}
stopCluster(cl)

Second run

cl <- makeCluster(4)
registerDoParallel(cl)
registerDoRNG(1234) # Same seed

run2 <- foreach(i = customer_ids) %dopar% {
 lucky_draw(i)
}
stopCluster(cl)

identical(run1, run2)

[1] TRUE

PARALLEL PROGRAMMING IN R

When to think about reproducibility
Direct call to random number generators

rnorm , rbinom , etc

Sampling randomly
Bootstraps

sample_n() from dplyr

Let's practice!
PARALLEL PROGRAMMING IN R

Debugging in
parallel

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

What is debugging?

PARALLEL PROGRAMMING IN R

Reading files in parallel
print(file_list)

 [1] "./stocks/2011.csv"
 [2] "./stocks/2012.csv"
 [3] "./stocks/2013.csv"
 [4] "./stocks/2014.csv"
 [5] "./stocks/2015.csv"
 ...

PARALLEL PROGRAMMING IN R

The filtering function
filterCSV <- function (filepath) {

 # Read CSV
 df <- read.csv(filepath)

 # Filter data
 df <- df %>%
 dplyr::filter(Company == "Tesla")

 # Write to back to same path
 write.csv(df, filepath)
}

PARALLEL PROGRAMMING IN R

The parallel apply
cl <- makeCluster(4)
clusterEvalQ(cl, library(dplyr))

dummy <- parLapply(cl, file_list, filterCSV)
stopCluster(cl)

Error in checkForRemoteErrors(val) :
 one node produced an error: ? In argument: `Company == "Tesla"`.
Caused by error:
! object 'Company' not found

PARALLEL PROGRAMMING IN R

The sequential run
short_list <- file_list[1:5]

dummy <- lapply(short_list, filterCSV)

read.csv(short_list[1])

 Date Open High Low Close Adj.Close Volume Company Year
1 2011-01-03 5.368 5.400 5.180 5.324 5.324 6415000 Tesla 2011
2 2011-01-04 5.332 5.390 5.204 5.334 5.334 5937000 Tesla 2011
3 2011-01-05 5.296 5.380 5.238 5.366 5.366 7233500 Tesla 2011
...

PARALLEL PROGRAMMING IN R

Locate the error
Error message

Error in checkForRemoteErrors(val) :
 one node produced an error:
 In argument: `Company == "Tesla"`.
Caused by error:
! object 'Company' not found

PARALLEL PROGRAMMING IN R

Locate the error
filterCSV <- function (filepath) {

 # Read CSV
 df <- read.csv(filepath)

 # Filter data
 df <- df %>%
 dplyr::filter(Company == "Tesla")

 # Write to back to same path
 write.csv(df, filepath)
}

filterCSV_debug <- function (filepath) {

 df <- read.csv(filepath)

 print(
 # Paste file path and column names
 paste(filepath, ":",
 # Collapse column names into one string
 paste0(colnames(df), collapse = ","))
)

 df <- df %>%
 dplyr::filter(Company == "Tesla")

 write.csv(df, filepath)
}

PARALLEL PROGRAMMING IN R

Locate the error
cl <- makeCluster(4)
clusterEvalQ(cl, library(dplyr))

dummy <- parLapply(cl, file_list, filterCSV_debug)
stopCluster(cl)

Error in checkForRemoteErrors(val) :
 one node produced an error: ? In argument: `Company == "Microsoft"`.
Caused by error:
! object 'Company' not found

PARALLEL PROGRAMMING IN R

Locate the error
cl <- makeCluster(4, outfile = "log.txt") # Log print messages into "log.txt"
clusterEvalQ(cl, library(dplyr))

parLapply(cl, file_list, filterCSV_debug)
stopCluster(cl)

Error in checkForRemoteErrors(val) :
 one node produced an error: ? In argument: `Company == "Tesla"`.
Caused by error:
! object 'Company' not found

PARALLEL PROGRAMMING IN R

Examining logs

PARALLEL PROGRAMMING IN R

Debugging with foreach
cl <- makeCluster(4,
 # Supply a text file name to log print messages
 outfile = "log.txt")

registerDoParallel(cl)

foreach(f = file_list,
 .packages = "dplyr") %dopar% {
 filterCSV_debug(f)
}

stopCluster(cl)

PARALLEL PROGRAMMING IN R

The good thing about furrr
plan(multisession, workers = 4)
future_map(file_list, filterCSV_debug)
plan(sequential)

PARALLEL PROGRAMMING IN R

The good thing about furrr
[1] "./stocks/2011.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Company,Year"
[1] "./stocks/2012.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Company,Year"
[1] "./stocks/2013.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Company,Year"
[1] "./stocks/2014.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Company,Year"
[1] "./stocks/2015.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Company,Year"
[1] "./stocks/2016.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Company,Year"
[1] "./stocks/2017.csv : Date,Open,High,Low,Close,Adj.Close,Volume,Year"
Error in (function (.x, .f, ..., .progress = FALSE) :
 ? In index: 1.
Caused by error in `dplyr::filter()`:
? In argument: `Company == "Tesla"`.
Caused by error:
! object 'Company' not found

PARALLEL PROGRAMMING IN R

The steps
For errors in parallel

Do a sequential run on a subset of the input

Examine the error message and print appropriate messages

Locate the error by printing or logging messages

Fix the error

Let's practice!
PARALLEL PROGRAMMING IN R

Advanced
debugging

PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

The default error behavior

PARALLEL PROGRAMMING IN R

Toy example
var_list <- list(1:10,
 1:10,
 c("a", "b", "c"))

lapply(var_list, sqrt)

Error in FUN(X[[i]], ...) : non-numeric
argument to mathematical function

Numeric

Numeric

Character

PARALLEL PROGRAMMING IN R

Ambiguity

 Designed by Freepik1

PARALLEL PROGRAMMING IN R

Catching the error
sqrt_custom <- function(var) {
 tryCatch(
 # Expression to evaluate
 sqrt(var),
 # What to do with an error
 error = function (e) return(e)
)
}

 Designed by Freepik1

PARALLEL PROGRAMMING IN R

Catching the error
lapply(var_list, sqrt_custom)

[[1]]
 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000
[10] 3.162278

[[2]]
 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000
[10] 3.162278

[[3]]
<simpleError in sqrt(var): non-numeric argument to mathematical function>

PARALLEL PROGRAMMING IN R

Catching errors in parallel
cl <- makeCluster(3)
parLapply(cl, var_list, sqrt_custom)
stopCluster(cl)

[[1]]
 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000
[10] 3.162278

[[2]]
 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000
[10] 3.162278

[[3]]
<simpleError in sqrt(var): non-numeric argument to mathematical function>

PARALLEL PROGRAMMING IN R

The births data
print(ls_births)

$AK
 month plurality
 1 1
 2 1
 ...
$AL
 month plurality
 10 1
 9 1
 ...
...

PARALLEL PROGRAMMING IN R

The summarizing function
summarise_births <- function(df) {

 tryCatch({
 df %>%
 group_by(month) %>%
 summarise(total = sum(plurality))
 },
 error = function (e) "Error! Check data")

}

PARALLEL PROGRAMMING IN R

Parallel apply
cl <- makeCluster(4)
clusterEvalQ(cl, library(dplyr))
parLapply(cl, ls_births, summarise_births)
stopCluster(cl)

$AK
 month total
 1 1 7
 2 2 13
 ...

$AL
[1] "Error! Check data"

$AR
 month total
 1 1 28
 2 2 28
 ...
...

PARALLEL PROGRAMMING IN R

Examine the source
head(ls_births[["AL"]], n = 10)

 month plurality
263 10 1
335 9 1
473 12 1
474 6 1
475 9 1
839 9 1
1291 11 Twins
1369 4 1
1609 5 1
1610 5 Triplets

PARALLEL PROGRAMMING IN R

Future map
plan(multisession, workers = 4)
config <- furrr_options(packages = "dplyr")
future_map(ls_births, summarise_births,
 .options = config)
plan(sequential)

$AK
 month total
 1 1 7
 2 2 13
 ...

$AL
[1] "Error! Check data"

$AR
 month total
 1 1 28
 2 2 28
 ...
...

PARALLEL PROGRAMMING IN R

The foreach case
cl <- makeCluster(4)
registerDoParallel(cl)

foreach(df = ls_births,
 .packages = "dplyr"
) %dopar% {
 summarise_births(df)
}

stopCluster(cl)

$AK
 month total
 1 1 7
 2 2 13
 ...

$AL
[1] "Error! Check data"

$AR
 month total
 1 1 28
 2 2 28
 ...
...

Let's practice!
PARALLEL PROGRAMMING IN R

That's a wrap!
PARALLEL PROGRAMMING IN R

Nabeel Imam
Data Scientist

PARALLEL PROGRAMMING IN R

What you learned
Parallel programming basics

Clusters, cores, or workers

Profiling with profvis()

Benchmarking with microbenchmark()

PARALLEL PROGRAMMING IN R

What you learned
Functional

parallel
parLapply() and family

clusterMap() for multiple inputs

furrr
future_map() and other variants

future_pmap() for multiple inputs

Loops
foreach

Parallel loops with %dopar%

Iterators

PARALLEL PROGRAMMING IN R

What you learned
Troubleshooting

Memory management

Reproducibility

Debugging

PARALLEL PROGRAMMING IN R

Further learning
Parallel R by Q. Ethan McCallum and Stephen Weston

Mastering Parallel Programming with R by Simon R. Chapple et al.

Congratulations!
PARALLEL PROGRAMMING IN R

