Motivation: social networks and predictive analytics

PREDICTIVE ANALYTICS USING NETWORKED DATA IN R

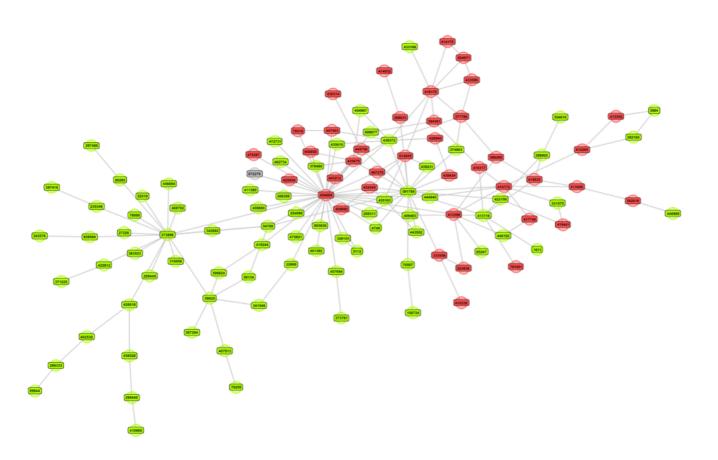
Bart Baesens, Ph.D.

Professor of Data Science, KU Leuven and University of Southampton

Applications

- Age
- Gender
- Fraud

atacamp



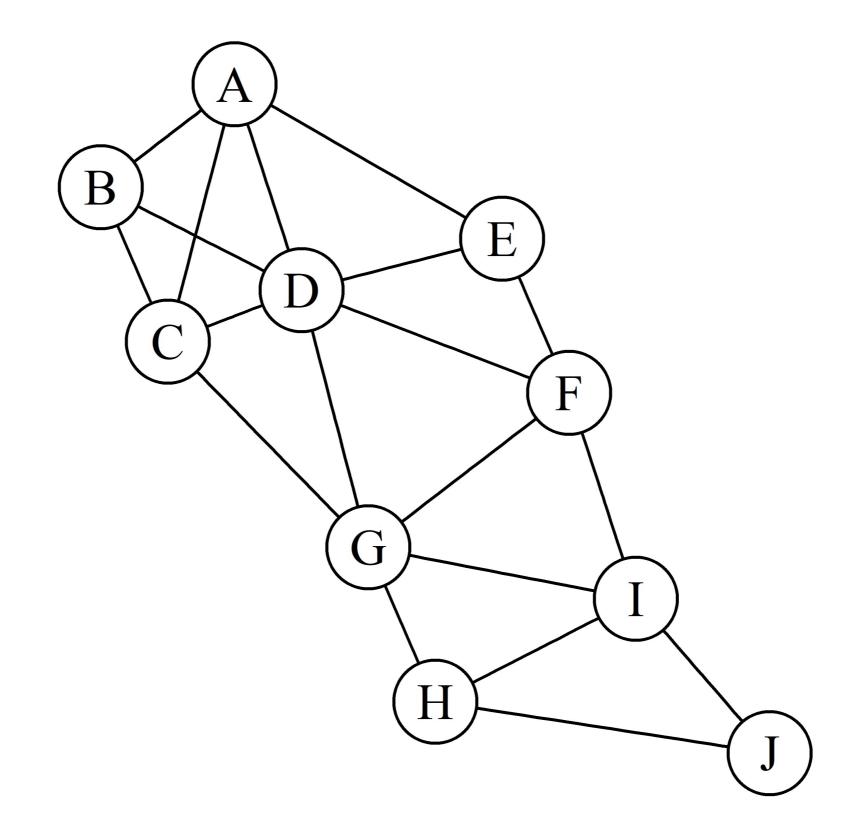
- Churn
 - Customer defection 0
 - 0 churn using
 - 1. Machine learning techniques
 - 2. Social networks

Companies predict who is most likely to

Overview

- Labeled social networks
 - Construct and label networks 0
 - Network learning 0
- Homophily
 - Measure relational dependency 0
 - Heterophilicity and dyadicity 0

- Network featurization • Compute node features
- Predictive modeling with networks Turn a network into a flat dataset 0
 - Predict churn among customers



Collaboration Network

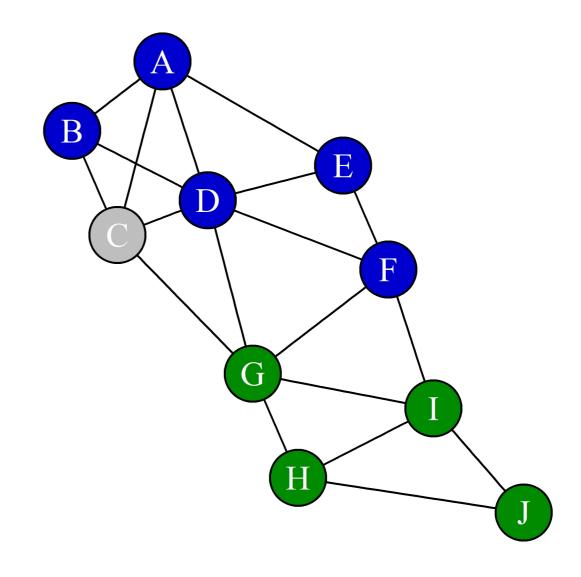
library(igraph); DataScienceNetwork <- data.frame(</pre> from = c('A', 'A', 'A', 'B', 'B', 'C', 'C', 'D', 'D', 'D', 'E', 'F', 'F', 'G', 'G', 'H', 'H', 'I'), to = c('B','C','D','E','C','D','D', 'G','E', 'F','G','F','G','I', 'I', 'H', 'I', 'J', 'J')) g <- graph_from_data_frame(DataScienceNetwork, directed = FALSE)</pre>

pos <- cbind(c(2, 1, 1.5, 2.5, 4, 4.5, 3, 3.5, 5, 6))c(10.5, 9.5, 8, 8.5, 9, 7.5, 6, 4.5, 5.5, 4)) plot.igraph(g, edge.label = NA, edge.color = 'black', layout = pos, vertex.label = V(g)\$name, vertex.color = 'white', vertex.label.color = 'black', vertex.size = 25)

Collaboration Network

V(g)\$technology < c('R','R','?','R','R',
 'R','P','P','P','P')
V(g)\$color <- V(g)\$technology</pre>

V(g)\$color <- gsub('R',"blue3", V(g)\$color)
V(g)\$color <- gsub('P',"green4", V(g)\$color)
V(g)\$color <- gsub('?',"gray", V(g)\$color)</pre>

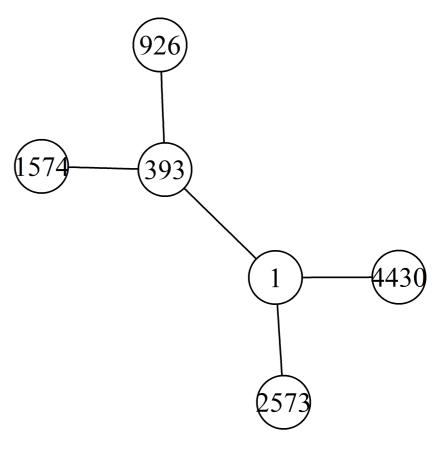


t datacamp

Churn Network

edgeList

	from	to
1	1	393
2	1	2573
3	1	4430
4	393	926
5	393	1574



Let's practice!

Labeled networks and network learning

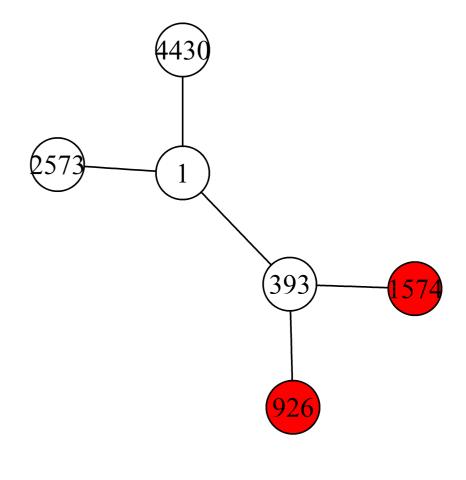
PREDICTIVE ANALYTICS USING NETWORKED DATA IN R

María Óskarsdóttir, Ph.D. Post-doctoral researcher

customers

	id	churn
1	1	0
2	393	0
3	2573	0
4	4430	Θ
5	926	1
6	1574	1

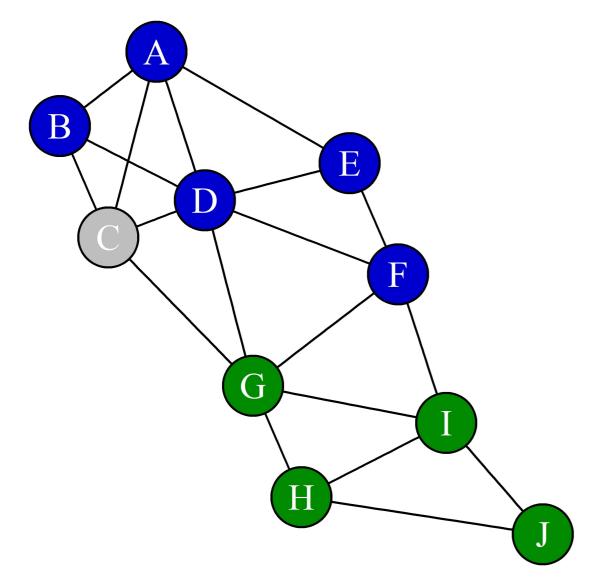
	from	to
1	1	393
2	1	2573
3	1	4430
4	393	926
5	393	1574



PREDICTIVE ANALYTICS USING NETWORKED DATA IN R

R datacamp

The Relational Neighbor Classifier

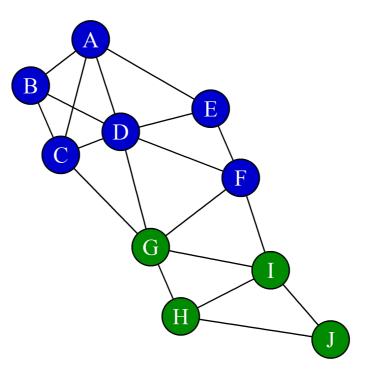


- Neighbors of Cecelia • A,B,D,G
- Neighbors of Cecelia that prefer R • A, B, D (75%)
- Neighbors of Cecelia that prefer Python • G (25%)

PREDICTIVE ANALYTICS USING NETWORKED DATA IN R

Cecelia has a higher probability to prefer R

The Relational Neighbor Classifier



rNeighbors <- c(4,3,3,5,3,2,3,0,1,0)
pNeighbors <- c(0,0,1,1,0,2,2,3,3,2)
rRelationalNeighbor <- rNeighbors / (rNeighbors + pNeighbors)
rRelationalNeighbor</pre>

1.00 1.00 0.75 0.86 1.00 0.50 0.60 0.00 0.00 0.00

R datacamp

Let's practice!

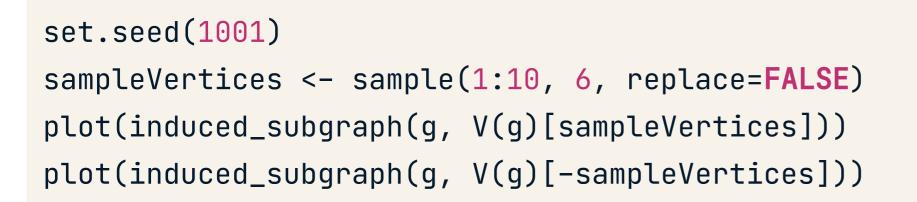
Challenges of network-based inference

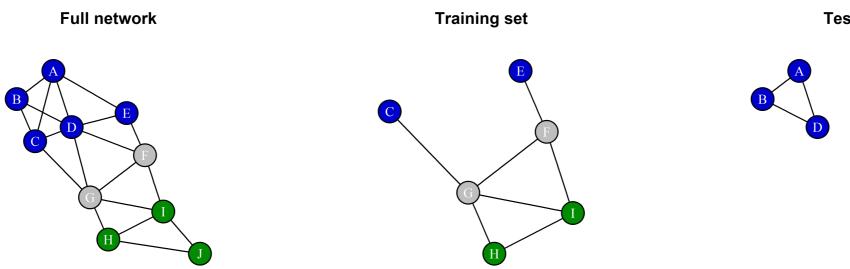
PREDICTIVE ANALYTICS USING NETWORKED DATA IN R

María Óskarsdóttir, Ph.D. Post-doctoral researcher

First challenge

Splitting the data!



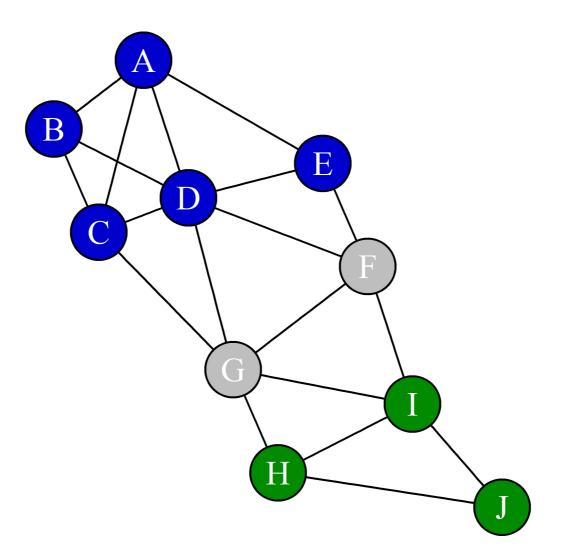


PREDICTIVE ANALYTICS USING NETWORKED DATA IN R

Test set

Second challenge

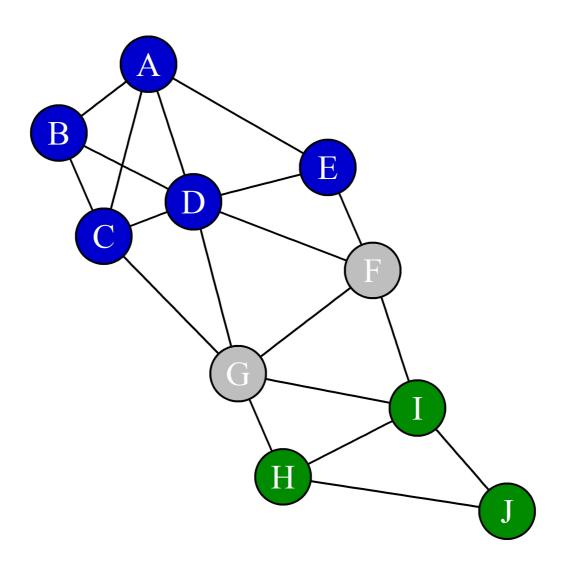
The observations in the dataset are not independent and identically distributed (iid)



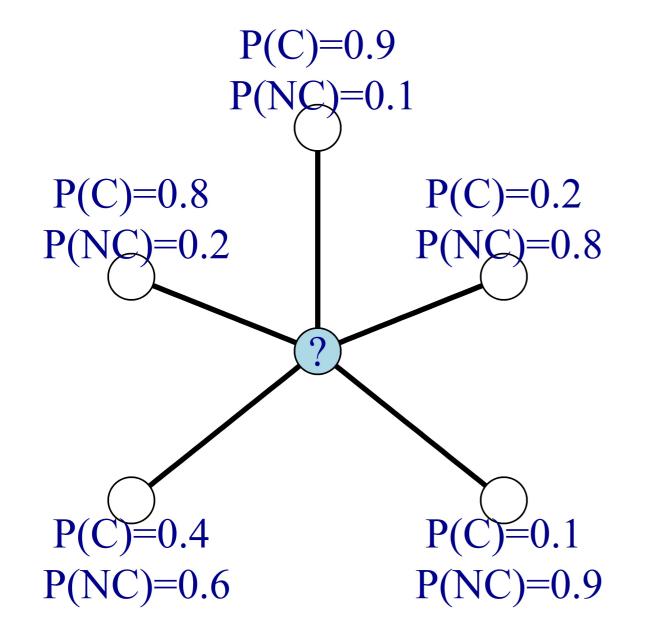
COMD

Third challenge

Collective Inference!



Probabilistic relational neighbor classifier



probability churn (C) (0.9 + 0.2 + 0.1 + 0.4 + 0.8) / 5

0.48

probability non-churn (NC) (0.1 + 0.8 + 0.9 + 0.6 + 0.2) / 5

0.52

tacamp

Let's practice!

