
Introduction
SCALABLE DATA PROCESS ING IN R

Simon Urbanek

Member of R-Core, Lead Inventive
Scientist, AT&T Labs Research

SCALABLE DATA PROCESSING IN R

bigmemory
All data must be stored on a single disk

Data must be represented as a matrix

SCALABLE DATA PROCESSING IN R

iotools
Data can multiple types - i.e., data frames

Stored across multiple machines

Processes data in "chunks"

SCALABLE DATA PROCESSING IN R

Process one chunk at a time sequentially
Limits resource usage by controlling chunk size

Allows results to be carried over

SCALABLE DATA PROCESSING IN R

Process each chunk independently
Corresponds to split-compute-combine

No information can be shared between chunks

Allows parallel and distributed processing

SCALABLE DATA PROCESSING IN R

Mapping and Reducing for More Complex Operations

Create a random vector
x <- rnorm(100)
Find the mean
mean(x)

-0.01996644

-0.01996644

Take the sum of chunks of
the vector
sl <- Map(function(v) {
 c(sum(v), length(v))},
 list(x[1:25], x[26:100]))

Add the sums and lengths
slr <- Reduce(`+`, sl)
Find the mean
slr[1]/slr[2]

SCALABLE DATA PROCESSING IN R

Not all things fit into Split-Apply-Combine
Operations that require all the data at once, can't be computed

using the Split-Apply-Combine approach.

Example: Median

SCALABLE DATA PROCESSING IN R

However ..
Many regression routines can be wri�en in terms of split-

apply-combine

Let's practice!
SCALABLE DATA PROCESS ING IN R

A first look at
iotools: Importing

data
SCALABLE DATA PROCESS ING IN R

Simon Urbanek

Member of R-Core, Lead Inventive
Scientist, AT&T Labs Research

SCALABLE DATA PROCESSING IN R

Chunk-wise processing
1. Load pieces of data

2. Convert them into native objects

3. Perform computation and store the results

Repeat 1 to 3 until all data is processed

SCALABLE DATA PROCESSING IN R

Importing data
O�en loading data takes more time than processing, and it

happens in 2 steps

Retrieving data from disk is a relatively slow operation

Converting raw data into native R objects

SCALABLE DATA PROCESSING IN R

Importing data using iotools
In the iotools package, the physical loading of data and

parsing of input into R objects are separated for be�er

�exibility and performance.

SCALABLE DATA PROCESSING IN R

iotools: Importing data
readAsRaw() reads the entire data into a raw vector

read.chunk() reads the data in chunks into a raw vector

SCALABLE DATA PROCESSING IN R

iotools: Parsing data
mstrsplit() converts raw data into a matrix

dstrsplit() converts raw data into a data frame

SCALABLE DATA PROCESSING IN R

iotools: Loading and parsing data
read.delim.raw() = readAsRaw() + dstrsplit()

SCALABLE DATA PROCESSING IN R

Chunk-wise processing
Not necessary to import all the data

Read a "chunk" of rows at a time from the data source

No intermediate structure

SCALABLE DATA PROCESSING IN R

File connections

Open a file connection
fc <- file("data-file.csv", "rb")
Read the firt line if the data has a header
readLines(fc, n = 1)
....
Code to import and parse the data
....
Close the file connection
close(fc)

Let's practice!
SCALABLE DATA PROCESS ING IN R

chunk.apply
SCALABLE DATA PROCESS ING IN R

Simon Urbanek

Member of R-Core, Lead Inventive
Scientist, AT&T Labs Research

SCALABLE DATA PROCESSING IN R

chunk.apply()
Abstracts the looping process

Enables Parallel execution

iotools is the basis of hmr , which allows you to process

data on the Apache Hadoop infrastructure

https://github.com/s-u/hmr

SCALABLE DATA PROCESSING IN R

mstrsplit() reads chunks as matrices

Use chunk.apply to get chunks of rows from foo.csv
chunk_col_sums <- chunk.apply("foo.csv",
 # A function to process each of the chunk
 function(chunk) {
 # Turn the chunk into a matrix
 m <- mstrsplit(chunk, type = "numeric", sep = ",")
 # Return the column sums
 colSums(m)
 },
 # Maximum chunk size in bytes
 CH.MAX.SIZE = 1e5)
Get the total sum
colSums(chunk_col_sums)

SCALABLE DATA PROCESSING IN R

dstrsplit() reads chunks as data frames

Use chunk.apply to get chunks of rows from foo.csv
chunk_col_sums <- chunk.apply("foo.csv",

 # A function to process each of the chunk
 function(chunk) {
 # Turn the chunk into a data frame
 d <- dstrsplit(chunk, col_types = rep("numeric", 3), sep = ",")
 # Return the column sums
 colSums(d)
 },
 # Maximum chunk size in bytes
 CH.MAX.SIZE = 1e5)

Get the total sum
colSums(chunk_col_sums)

SCALABLE DATA PROCESSING IN R

Parallelizing chunk.apply()
Use chunk.apply to get chunks of rows from foo.csv
chunk_col_sums <- chunk.apply("foo.csv",

 # A function to process each of the chunk
 function(chunk) {

 # Turn the chunk into a data frame
 d <- dstrsplit(chunk, col_types = rep("numeric", 3), sep = ",")
 colSums(d)
 },
 # 2 processors read and process data
 parallel = 2)

Get the total sum
colSums(chunk_col_sums)

SCALABLE DATA PROCESSING IN R

Note about parallelization
Increasing the number of processors won't always speed up

your code

There are usually diminishing returns when you add

additional processors on a single machine

Let's practice!
SCALABLE DATA PROCESS ING IN R

