Understanding **Bayesian methods**

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

Estimating probability

The **probability** of A is denoted P(A)

- P(work) = 23 / 40 = 57.5%
- P(store) = 4 / 40 = 10.0%

Joint probability and independent events

The **joint probability** of events A and B is denoted P(A and B)

- P(work and evening) = 1%
- P(work and afternoon) = 20%

R datacamp

Conditional probability and dependent events

The conditional probability of events A and B is denoted P(A B)

- $P(A \mid B) = P(A \text{ and } B) / P(B)$
- P(work | evening) = 1 / 25 = 4%
- P(work | afternoon) = 20 / 25 = 80%

Making predictions with Naive Bayes

building a Naive Bayes model library(naivebayes)

m <- naive_bayes(location ~ time_of_day, data = location_history)</pre>

making predictions with Naive Bayes future_location <- predict(m, future_conditions)</pre>

Let's practice!

Understanding NB's "naivety"

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

The challenge of multiple predictors

atacamp

A "naive" simplification

An "infrequent" problem

datacamp

Let's practice!

Applying Naive Bayes to other problems

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

How Naive Bayes uses data

R datacamp

Binning numeric data for Naive Bayes

Preparing text data for Naive Bayes

R datacamp

Let's practice!

