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Estimating probability
The probability of A is denoted

P(A)

P(work) = 23 / 40 = 57.5%

P(store) = 4 / 40 = 10.0%
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Joint probability and independent events
The joint probability of events

A and B is denoted P(A and B)

P(work and evening) = 1%

P(work and a�ernoon) =

20%
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Conditional probability and dependent events
The conditional probability of

events A and B is denoted P(A

| B)

P(A | B) = P(A and B) / P(B)

P(work | evening) = 1 / 25 =

4%

P(work | a�ernoon) = 20 / 25

= 80%



SUPERVISED LEARNING IN R: CLASSIFICATION

Making predictions with Naive Bayes
# building a Naive Bayes model 
library(naivebayes) 
m <- naive_bayes(location ~ time_of_day, data = location_history) 

# making predictions with Naive Bayes 
future_location <- predict(m, future_conditions) 
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The challenge of multiple predictors
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A "naive" simplification
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An "infrequent" problem
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The Laplace correction
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How Naive Bayes uses data
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Binning numeric data for Naive Bayes
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Preparing text data for Naive Bayes
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