Making binary predictions with regression

SUPERVISED LEARNING IN R: CLASSIFICATION

Introducing linear regression

Regression for binary classification

Introducing logistic regression

Making predictions with logistic regression

m < -glm(y ~ x1 + x2 + x3)data = my_dataset, family = "binomial")

acamp

prob	<-	<pre>predict(m, test_dataset,</pre>
		type = <mark>"response</mark> ")

pred <- ifelse(prob > 0.50, 1, 0)

Model performance tradeoffs

SUPERVISED LEARNING IN R: CLASSIFICATION

Understanding ROC curves

tacamp

Area under the ROC curve

Using AUC and ROC appropriately

tacamp

Dummy variables, missing data, and interactions

SUPERVISED LEARNING IN R: CLASSIFICATION

Dummy coding categorical data

create gender factor

my_data\$gender <- factor(my_data\$gender,</pre>

```
levels = c(0, 1, 2),
labels = c("Male", "Female", "Other"))
```


Imputing missing data

Interaction effects

R datacamp

Automatic feature selection

SUPERVISED LEARNING IN R: CLASSIFICATION

Stepwise regression

Stepwise regression caveats

