Making decisions with trees

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

A decision tree model

Decision trees for prediction

LendingClub

Check Your Rate

Get a custom rate for your \$35,000 loan in 1 cl	ck
--	----

First Name	1	<u>ا</u>
Last Name		
Street Address		
City		
State	Choose One	
Zip Code		
Date of Birth	Month 🗘 Day 🌲 Year	÷

R datacamp

Divide-and-conquer

Divide-and-conquer

R datacamp

Divide-and-conquer

R datacamp

The resulting tree

Building trees in R

```
# building a simple rpart classification tree
library(rpart)
m <- rpart(outcome ~ loan_amount + credit_score, data = loans,</pre>
             method = "class")
```

making predictions from an rpart tree p <- predict(m, test_data, type = "class")</pre>

Let's practice!

Growing larger classification trees

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

Choosing where to split

Axis-parallel splits

The problem of overfitting

Evaluating model performance

Let's practice!

Tending to classification trees

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

Pre-pruning

SUPERVISED LEARNING IN R: CLASSIFICATION

R datacamp

Post-pruning

SUPERVISED LEARNING IN R: CLASSIFICATION

R datacamp

Pre- and post-pruning with R

```
control = prune_control)
```

```
m_pruned <- prune(m, cp = 0.20)
```


Let's practice!

Seeing the forest from the trees

SUPERVISED LEARNING IN R: CLASSIFICATION

Brett Lantz Instructor

Understanding random forests

Making decisions as an ensemble

R datacamp

Random forests in R

```
# building a simple random forest
library(randomForest)
m <- randomForest(repaid ~ credit_score + request_amt, data = loans,</pre>
             ntree = 500,  # number of trees in the forest
             mtry = sqrt(p)) # number of predictors (p) per tree
```

making predictions from a random forest p <- predict(m, test_data)</pre>

Let's practice!

