Welcome and Introduction

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Data Scientists, Win Vector LLC

What is Regression?

Regression: Predict a numerical outcome ("dependent variable") from a set of inputs ("independent variables").

- Statistical Sense: Predicting the expected value of the outcome.
- Casual Sense: Predicting a numerical outcome, rather than a \bullet discrete one.

What is Regression?

- How many units will we sell? (Regression)
- Will this customer buy our product (yes/no)? (Classification)
- What price will the customer pay for our product? (Regression)

Example: Predict Temperature from Chirp Rate

Temperature vs. Chirp rate

tacamp

Predict Temperature from Chirp Rate

Temperature vs. Chirp rate with linear fit

tacamp

Predict Temperature from Chirp Rate

Predicting temperature from a linear model

tacamp

Regression from a Machine Learning Perspective

- Scientific mindset: Modeling to understand the data \bullet generation process
 - *Engineering mindset*: *Modeling to predict accurately 0

Machine Learning: Engineering mindset

Let's practice!

Linear regression the fundamental method

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector LLC

Linear Regression

$$y=eta_0+eta_1x_1+eta_2x_2+...$$

- y is *linearly* related to each x_i
- Each x_i contributes *additively* to y

Linear Regression in R: lm()

cmodel <- lm(temperature ~ chirps_per_sec, data = cricket)</pre>

- formula: temperature ~ chirps_per_sec
- data frame: cricket

Formulas

fmla_1 <- temperature ~ chirps_per_sec</pre> fmla_2 <- blood_pressure ~ age + weight</pre>

- LHS: outcome
- RHS: inputs
 - use + for multiple inputs

fmla_1 <- as.formula("temperature ~ chirps_per_sec")</pre>

Looking at the Model

$$y=eta_0+eta_1x_1+eta_2x_2+...$$

cmodel	
--------	--

Call: lm(formula = te	mperature ~ chirps_per_sec, data = cricket)	
Coefficients:		
(Intercept)	chirps_per_sec	
25.232	3.291	

More Information about the Model

summary(cmodel)

Call: lm(formula = fmla, data = cricket)			
Residuals:			
Min 1Q Median 3Q Max			
-6.515 -1.971 0.490 2.807 5.001			
Coefficients:			
Estimate Std. Error t value Pr(> t)			
(Intercept) 25.2323 10.0601 2.508 0.026183 *			
chirps_per_sec 3.2911 0.6012 5.475 0.000107 ***			
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1			
Residual standard error: 3.829 on 13 degrees of freedom			
Multiple R-squared: 0.6975, Adjusted R-squared: 0.6742			
F-statistic: 29.97 on 1 and 13 DF, p-value: 0.0001067			

R datacamp

More Information about the Model

broom::glance(cmodel)

sigr::wrapFTest(cmodel)

Let's practice!

Predicting once you fit a model SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector LLC

Predicting From the Training Data

cricket\$prediction <- predict(cmodel)</pre>

predict() by default returns training data predictions

Looking at the Predictions

```
ggplot(cricket, aes(x = prediction, y = temperature)) +
geom_point() +
geom_abline(color = "darkblue") +
ggtitle("temperature vs. linear model prediction")
```


temperature vs. linear model prediction

R datacamp

Predicting on New Data

newchirps <- data.frame(chirps_per_sec = 16.5)</pre> newchirps\$prediction <- predict(cmodel, newdata = newchirps)</pre> newchirps

chirps_per_sec pred 16.5 79.53537 1

Predicting temperature from a linear model

SUPERVISED LEARNING IN R: REGRESSION

latacamp

Let's practice!

Wrapping up linear regression

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Pros and Cons of Linear Regression

- Pros
 - Easy to fit and to apply 0
 - Concise 0
 - Less prone to overfitting 0

Pros and Cons of Linear Regression

• Pros

- Easy to fit and to apply
- Concise
- Less prone to overfitting
- Interpretable

Call:				
lm(formula = blood_pressure ~ age + weight, data = bloodpressure)				
Coefficients:				
(Intercept)	age	weight		
30.9941	0.8614	0.3349		

Pros and Cons of Linear Regression

- Pros
 - Easy to fit and to apply 0
 - Concise 0
 - Less prone to overfitting 0
 - Interpretable 0
- Cons
 - Can only express linear and additive relationships

Collinearity

• Collinearity -- when input variables are partially correlated.

Call: lm(formula = blo	od_pressure	e ~ age + weight, data = bloodpressure)	
Coefficients: (Intercept)	age	weight	
30.9941	0.8614	0.3349	

Collinearity

- Collinearity -- when variables are partially correlated.
- Coefficients might change sign

Call: lm(formula = bl	.ood_pressure	~ age + weight, data = bloodpressure)	
Coefficients:			
(Intercept)	age	weight	
30.9941	0.8614	0.3349	

Collinearity

- Collinearity -- when variables are partially correlated.
- Coefficients might change sign
- High collinearity:
 - Coefficients (or standard errors) look too large
 - Model may be unstable

Call: lm(formula = bl	ood_pressure /	~ age + weight, data = bloodpressure)	
Coefficients: (Intercept) 30.9941	age 0.8614	weight 0.3349	

Coming Next

- Evaluating a regression model
- Properly training a model

Let's practice!

