Categorical inputs SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Example: Effect of Diet on Weight Loss

WtLoss24 ~ Diet + Age + BMI

Diet	Age	BMI	WtLoss24
Med	59	30.67	-6.7
Low-Carb	48	29.59	8.4
Low-Fat	52	32.9	6.3
Med	53	28.92	8.3
Low-Fat	47	30.20	6.3

model.matrix()

model.matrix(WtLoss24 ~ Diet + Age + BMI, data = diet)

- All numerical values
- Converts categorical variable with N levels into N 1 indicator \bullet variables

Indicator Variables to Represent Categories

Original Data

Diet	Age	•••
Med	59	•••
Low-Carb	48	•••
Low-Fat	52	•••
Med	53	•••
Low-Fat	47	•••

Model Matrix

(Int)	DietLow- Fat	DietMed	•••
1	0	1	•••
1	0	0	•••
1	1	0	•••
1	0	1	•••
1	1	0	•••

• reference level: "Low-Carb"

tacamp

Interpreting the Indicator Variables

Linear Model:

 $WtLoss24 = \beta_0 + \beta_{DietLow} x_{DietLow} + \beta_{DietMed} x_{DietMed} + \beta_{Age} x_{Age} + \beta_{BMI} x_{BMI}$

lm(WtLoss24 ~ Diet + Age + BMI, data = diet))

Coefficients:		
(Intercept)	DietLow-Fat	DietMed
-1.37149	-2.32130	-0.97883
Age	BMI	
0.12648	0.01262	

Issues with one-hot-encoding

- Too many levels can be a problem
 - Example: ZIP code (about 40,000 codes)
- Don't hash with geometric methods! \bullet

Let's practice!

Interactions

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Additive relationships

Example of an additive relationship:

plant_height ~ bacteria + sun

- Change in height is the sum of the effects of bacteria and \bullet sunlight
 - Change in sunlight causes same change in height, 0 independent of bacteria
 - Change in bacteria causes same change in height, 0 independent of sunlight

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

plant_height ~ bacteria + sun + bacteria:sun

- Change in height is more (or less) than the sum of the effects due to sun/bacteria
- At higher levels of sunlight, 1 unit change in bacteria causes more change in height

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

plant_height ~ bacteria + sun + bacteria:sun

- sun : categorical {"sun", "shade"} ${}^{\bullet}$
- In sun, 1 unit change in bacteria causes *m* units change in \bullet height
- In shade, 1 unit change in bacteria causes *n* units change in height

Like two separate models: one for sun, one for shade.

Example of no Interaction: Soybean Yield

yield ~ Stress + SO2 + O3

datacamp

Example of an Interaction: Alcohol Metabolism

Metabol ~ Gastric + Sex

tacamp

Expressing Interactions in Formulae

Interaction - Colon (:)

y ~ a:b

Main effects and interaction - Asterisk (*)

```
y ~ a*b
# Both mean the same
y ~ a + b + a:b
```

• Expressing the product of two variables - I

y ~ I(a*b)

same as $y \propto ab$

Finding the Correct Interaction Pattern

Formula	RMSE (cross validation)
Metabol ~ Gastric + Sex	1.46
Metabol ~ Gastric * Sex	1.48
Metabol ~ Gastric + Gastric:Sex	1.39

Let's practice!

Transforming the response before modeling

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

The Log Transform for Monetary Data

- Monetary values: lognormally distributed
- Long tail, wide dynamic range (60-700K)

R datacamp

Lognormal Distributions

- mean > median (~ 50K vs 39K)
- Predicting the mean will overpredict typical values

R datacamp

Back to the Normal Distribution

For a Normal Distribution:

- mean = median (here: 4.53
 vs 4.59)
- more reasonable dynamic range (1.8 5.8)

The Procedure

1. Log the outcome and fit a model

model <- lm(log(y) ~ x, data = train)</pre>

The Procedure

1. Log the outcome and fit a model

model <- lm(log(y) ~ x, data = train)</pre>

2. Make the predictions in log space

logpred <- predict(model, data = test)</pre>

The Procedure

1. Log the outcome and fit a model

model <- lm(log(y) ~ x, data = train)</pre>

2. Make the predictions in log space

logpred <- predict(model, data = test)</pre>

3. Transform the predictions to outcome space

pred <- exp(logpred)</pre>

Predicting Log-transformed Outcomes: Multiplicative Error

log(a) + log(b) = log(ab)

log(a) - log(b) = log(a/b)

- Multiplicative error: pred/y
- Relative error: $(pred y)/y = \frac{pred}{y} 1$

Reducing multiplicative error reduces relative error.

Root Mean Squared Relative Error

RMS-relative error = $\sqrt{100}$

$$\sqrt{(rac{pred-y}{y})^2}$$

- Predicting log-outcome reduces RMS-relative error
- But the model will often have larger RMSE

Example: Model Income Directly

modIncome <- lm(Income ~ AFQT + Educ, data = train)</pre>

- AFQT : Score on proficiency test 25 years before survey
- Educ : Years of education to time of survey
- **Income** : Income at time of survey

Model Performance

test %>%

+

```
mutate(pred = predict(modIncome, newdata = test),
+
```

```
err = pred - Income) %>%
+
```

```
summarize(rmse = sqrt(mean(err^2)),
+
```

```
rms.relerr = sqrt(mean((err/Income)^2)))
```

RMSE	RMS-relative error
36,819.39	3.295189

Model log(Income)

modLogIncome <- lm(log(Income) ~ AFQT + Educ, data = train)</pre>

Model Performance

test %>%
+ mutate(predlog = predict(modLogIncome, newdata = test),
+ pred = exp(predlog),
+ err = pred - Income) %>%
+ summarize(rmse = sqrt(mean(err^2)),
+ rms.relerr = sqrt(mean((err/Income)^2)))

RMSE	RMS-relative error
38,906.61	2.276865

Compare Errors

log(Income) model: smaller RMS-relative error, larger RMSE

Model	RMSE	RMS-relative error
On Income	36,819.39	3.295189
On log(Income)	38,906.61	2.276865

Let's practice!

Transforming inputs before modeling

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector LLC

Why To Transform Input Variables

- Domain knowledge/synthetic variables \bullet
 - $\circ \ Intelligence \sim rac{mass.brain}{mass.body^{2/3}}$

Why To Transform Input Variables

- Domain knowledge/synthetic variables \bullet
 - $\circ \ Intelligence \sim rac{mass.brain}{mass.body^{2/3}}$
- Pragmatic reasons
 - Log transform to reduce dynamic range 0
 - Log transform because meaningful changes in variable are 0 multiplicative

Why To Transform Input Variables

- Domain knowledge/synthetic variables \bullet
 - $\circ \ Intelligence \sim rac{mass.brain}{mass.body^{2/3}}$
- Pragmatic reasons
 - Log transform to reduce dynamic range 0
 - Log transform because meaningful changes in variable are 0 multiplicative
 - $ar{y}$ approximately linear in f(x) rather than in x0

Example: Predicting Anxiety

Anxiety as a function of hassles

tacamp

Transforming the hassles variable

Anxiety vs hassles

Green: anx ~ hassles; Orange: anx ~ I(hassles^2); Purple: anx ~ I(hassles^3)

tacamp

Different possible fits

Which is best?

- anx ~ I(hassles^2)
- anx ~ I(hassles^3)
- anx ~ I(hassles^2) + I(hassles^3) ${\color{black}\bullet}$
- anx ~ exp(hassles)

I() : treat an expression literally (not as an interaction)

...

Compare different models

Linear, Quadratic, and Cubic models

mod_lin <- lm(anx ~ hassles, hassleframe)
summary(mod_lin)\$r.squared</pre>

0.5334847

```
mod_quad <- lm(anx ~ I(hassles^2), hassleframe)
summary(mod_quad)$r.squared</pre>
```

0.6241029

```
mod_tritic <- lm(anx ~ I(hassles^3), hassleframe)
summary(mod_tritic)$r.squared</pre>
```

0.6474421

Compare different models

Use cross-validation to evaluate the models

Model	RMSE
Linear (<i>hassles</i>)	7.69
Quadratic ($hassles^2$)	6.89
Cubic ($hassles^3$)	6.70

Let's practice!

